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a b s t r a c t

An arc-coloring of a strongly connected digraph D is a strongly monochromatic-connecting
coloring if for every pair u, v of vertices in D there exist an (u, v)-monochromatic path and
a (v, u)-monochromatic path. Let smc(D) denote the maximum number of colors that can
be used in a strongly monochromatic-connecting coloring of D. In this paper we prove that
if D is a strongly connected oriented graph of sizem, then smc(D) = m − Ω(D) + 1, where
Ω(D) is the minimum size of a spanning strongly connected subdigraph of D. As a corollary
of this result, we see that a strongly connected oriented graph D of order n is hamiltonian
if and only if smc(D) = m − n + 1.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An interesting generalization of the concept of connectivity in graphs, due to Chartrand, Johns, McKeon and Zhang [5], is
rainbow connecting colorings. An edge-colored graph G is rainbow connected if there exists a path, with no two edges colored
the same, between any two vertices of G (see for instance [7]), and this concept can be easily extended to digraphs (see [1,6]).
The rainbow connection number of a graph G is the minimum number of colors that are needed in order to make G rainbow
connected. The rainbow connection number, besides being an interesting combinatorial measure, has applications to the
secure transfer of classified information between agencies and in the area of networking. This applications background is
fromLi and Sun [7]. Caro andYuster [4], as a naturally relatedquestion, introduced the concept ofmonochromatic-connecting
coloring of a graph. An edge-coloring of a graph G is a monochromatic-connecting coloring if there exists a monochromatic
path between any two vertices of G. The above definition can be also naturally extended to digraphs. An arc-coloring of
a digraph D is a strongly monochromatic-connecting coloring (SMC coloring, for short) if for every pair u, v of vertices in D
there exist an (u, v)-monochromatic path and a (v, u)-monochromatic path. The strong monochromatic connection number
of a strongly connected digraph D, denoted by smc(D), is defined as the maximum number of colors used in an SMC coloring
of D.

Observe that given a strongly connected digraph D and a strongly connected spanning subdigraph H of D, by coloring the
arcs ofH with one single color and the remaining arcswith distinct colors, we obtain an SMC coloring ofDwithm−|A(H)|+1
colors, and therefore smc(D) ≥ m − |A(H)| + 1. In this paper the following theorem is proved.
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Theorem 1. Let D be a strongly connected oriented graph of size m, and let Ω(D) be the minimum size of a strongly connected
spanning subdigraph of D. Then

smc(D) = m − Ω(D) + 1.

As a corollary of Theorem 1, it follows that an oriented graphD of order n is hamiltonian if and only if smc(D) = m−n+1.
From here we can see also that computing Ω(D) is NP-hard.

2. Definitions and notation

All the digraphs considered in this work are finite oriented graphs, that is, a digraph with no symmetric arcs or loops. A
digraph is said to be connected if its underlying graph is connected. Given a digraph D = (V (D), A(D)), a vertex v is reachable
from a vertex u if D contains an (u, v)-path. A digraph D is unilateral if, for every pair u, v of vertices of D, either u is reachable
from v or v is reachable from u (or both). A digraph D is strongly connected if for every pair of vertices {u, v} ⊆ V (D), the
vertex u is reachable from v and the vertex v is reachable from u. Given a strongly connected digraph D, let Ω(D) denote the
minimum size of a strongly connected spanning subdigraph of D. The minimum in-degree (resp. out-degree) of a subdigraph
H of D will be denoted as δ−(H) (resp. δ+(H)).

Let D = (V (D), A(D)) be a strongly connected digraph. Given S ⊆ V (D), the subdigraph induced by S is the subdigraph of
D of maximum size which has S as set of vertices, and will be denoted as D[S]. Given F ⊆ A(D), the subdigraph induced by F
is the subdigraph of D of minimum order which has F as set of arcs, and will be denoted as D[F ]. Given a positive integer p,
let [p] = {1, 2, . . . , p}. As a p-coloring of Dwe will understand a surjective function Γ : A(D) → [p]. For each ‘‘color’’ i ∈ [p]
the set of arcs Γ −1(i) will be called the chromatic class (of color i), and if |Γ −1(i)| = 1, the color i and the chromatic class
Γ −1(i) will be called trivial. For each Γ , kΓ will be the number of non-trivial colors of Γ and, if kΓ ≥ 1, we will assume that
[kΓ ] = {1, . . . , kΓ } ⊆ [p] is the set of non-trivial colors.

A subdigraph H of Dwill be calledmonochromatic if A(H) is contained in a chromatic class, and we will say that the color
i appears in H if A(H) ∩ Γ −1(i) ̸= ∅.

A p-coloring of a digraph D is a strongly monochromatic-connecting coloring (SMC coloring, for short) if for every pair u, v
of vertices in D there exist an (u, v)-monochromatic path and a (v, u)-monochromatic path.

The strong monochromatic connection number of a strongly connected digraph D, denoted by smc(D), is defined as the
maximum integer p such that there is a p-coloring of Dwhich is an SMC coloring of D.

We will say that a p-coloring Γ of D is a good coloring if p = smc(D) and Γ is an SMC coloring of D.
For general concepts we may refer the reader to [2,3].

3. The results

In this section we present the proof of Theorem 1. We start with a remark and a lemma that will be used in the proof of
Theorem 1.

Remark 2. Let D = (V (D), A(D)) be a strongly connected oriented graph and let Γ be a SMC coloring of D.
1. Since D has no symmetric arcs, for each x ∈ V (D) there is at least one arc colored with a non-trivial color which is

incident to x.
2. If Γ is a good coloring of D, for every non-trivial color i, D[Γ −1(i)] is connected.
3. Let F ⊆ A(D) such that D[F ] is strongly connected and let I = {Γ (e) : e ∈ F}. Let V = V (D[F ]) and F ′

= A(D[V ]) \ F .
Given i ∈ I , consider the coloring Γ ′ such that: Γ ′(e) = Γ (e) for every e ∈ A(D) such that Γ (e) ̸∈ I; Γ ′(e) = i for every
e ∈ A(D) \ F ′ such that Γ (e) ∈ I; and each e ∈ F ′ such that Γ (e) ∈ I receive a trivial color. Γ ′ is a SMC coloring.

Lemma 3. Let D = (V (D), A(D)) be a strongly connected oriented graph of order n. Then there is a good coloring Γ of D such
that each non-trivial chromatic class of Γ induces a strongly connected subdigraph of D.

Moreover, if Γ have at least 2 non-trivial chromatic classes, then each non-trivial chromatic class induces a subdigraph of
order q, with 3 ≤ q ≤ n − 2.

Proof. Let D = (V (D), A(D)) be a strongly connected oriented graph of order n, and let tD be the maximum number of trivial
colors that appear in a good coloring of D.

Given a good coloring Γ of D, for each non-trivial color i ∈ [kΓ ] let rΓ (i) be the number of ordered pairs of vertices (x, y)
of the subdigraph D[Γ −1(i)] such that there is no (x, y)-path in D[Γ −1(i)], and let rΓ =

∑
i∈[kΓ ]

rΓ (i).
Let Γ be a good coloring of Dwith tD trivial colors and such that, among all the good colorings of Dwith tD trivial colors,

rΓ is minimum.
For each i ∈ [kΓ ], let Hi = D[Γ −1(i)] and let D∗

= D[
⋃

i∈[kΓ ]
Γ −1(i)].

Claim 1. If uv ∈ A(D∗) and P is an (u, v)-trail in D∗
− {uv}, then at least 3 colors appear in the subdigraph P ∪ {uv}.

Let uv ∈ A(D∗) and P be an (u, v)-trail in D∗
− {uv}. Since uv ∈ A(D∗) it follows there is i ∈ [kΓ ] such that uv ∈ A(Hi). If

P is an (u, v)-trail in Hi − {uv}, the coloring Γ ′ obtained from Γ by assigning a new color to the arc uv is an SMC coloring of
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