Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A new series of optimal tight conflict-avoiding codes of weight 3

Miwako Mishima ^{[a,](#page-0-0)}[*](#page-0-1), Koji Momihara ^{[b](#page-0-2)}

^a *Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan* ^b *Department of Mathematics, Faculty of Education, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan*

a r t i c l e i n f o

Article history: Received 3 February 2015 Received in revised form 21 December 2015 Accepted 7 December 2016 Available online 3 January 2017

Keywords: Conflict-avoiding code (CAC) Optimal code Tight code

a b s t r a c t

In this article, a construction of an optimal tight conflict-avoiding code of length 3^dp^e and weight 3 is shown for $d \equiv 1 \pmod{3}$, $e \in \mathbb{N}$ and a prime $p \equiv 3 \pmod{8}$ with $p \neq 3$, assuming that *p* is a non-Wieferich prime if $e \geq 2$. This is a new series of optimal conflictavoiding code for which the number of codewords can be exactly determined.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A conflict-avoiding code (CAC) is known as a protocol sequence for transmitting data packets over a multiple-access channel (collision channel) without feedback [\[5](#page--1-0)[,8,](#page--1-1)[10,](#page--1-2)[15](#page--1-3)[,20,](#page--1-4)[22\]](#page--1-5). We save the technical description for such a channel model to other literature [\[1](#page--1-6)[,14\]](#page--1-7).

Let $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ and define the notation \overline{a} as an element in \mathbb{Z}_n represented by an integer $a \in \{0, 1, \ldots, n-1\}$, although, for simplicity, we will not distinguish between \mathbb{Z}_n and $\{0, 1, \ldots, n-1\}$ (thus \overline{a} and a) as long as its meaning is apparent from the context. A conflict-avoiding code C of length *n* and weight w is defined mathematically as a collection of w-subsets, called codewords, of \mathbb{Z}_n such that $\Delta(x) \cap \Delta(y) = \emptyset$ for any distinct codewords $x, y \in \mathcal{C}$, where $\Delta(x) := \{j - i \mid i, j \in x, i \neq j\}$ as an ordinary set (not a multiset). Let

$$
\Delta(C) := \bigcup_{x \in C} \Delta(x),
$$

where the union is taken as a multiset. Then, the definition of a CAC is equivalent to that $\Delta(C)$ covers every element of $\mathbb{Z}_n^*: = \mathbb{Z}_n\backslash\{0\}$ at most once. A code $\mathcal C$ is said to be *tight* if $\Delta(\mathcal C)$ covers every element of \mathbb{Z}_n^* exactly once. The class of all the CACs of length *n* and weight w is denoted by CAC(*n*, w). If a codeword $x \in C$ is of form $\{0, i, \ldots, (w - 1)i\}$, it is said to be *equidifference*, and *i* is called a *generator* of the codeword *x*. If a code C consists only of equidifference codewords, then C is called an *equidifference code*. The class of all CACs of length n and weight w is denoted by CAC(n , w), and that of all equidifference CACs of length *n* and weight w is denoted by CAC^e(n, w). Obviously CAC^e(n, w) \subseteq CAC(n, w). The maximum sizes of a CAC and an equidifference CAC of length *n* and weight w are denoted as $M(n, w)$ and $M^e(n, w)$, respectively, i.e.,

M(*n*, *w*) = max{|*C*| | *C* ∈ CAC(*n*, *w*)} and *M^e*(*n*, *w*) = max{|*C*| | *C* ∈ CAC^{*e*}(*n*, *w*)}.

A code $C \in \mathsf{CAC}(n, w)$ is said to be *optimal* if $|C| = M(n, w)$. Especially when $w = 3$, a tight code in $\mathsf{CAC}^e(n, 3)$ is optimal.

* Corresponding author. *E-mail addresses:* miwako@gifu-u.ac.jp (M. Mishima), momihara@educ.kumamoto-u.ac.jp (K. Momihara).

<http://dx.doi.org/10.1016/j.disc.2016.12.003> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

CrossMark

The main objective of the study on CACs has been to determine $M(n,\,w)$ and $M^e(n,\,w),$ and several results can be found in $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ $[3,4,7,10-13,16-18,23]$ for $w = 3, 4$. Especially, $M(n, 3)$ was settled for even *n* by Levenshtein and Tonchev [\[10\]](#page--1-2), Jimbo et al. [\[7\]](#page--1-10), Mishima et al. [\[16\]](#page--1-12) and Fu et al. [\[3\]](#page--1-8). As for odd *n*, Momihara [\[17\]](#page--1-15) gave a necessary and sufficient condition for the existence of a tight code in CAC*^e* (*n*, 3) and an algorithm for finding admissible odd *n*. Later, the condition given by Momihara [\[17\]](#page--1-15) was restated by Fu et al. [\[4\]](#page--1-9) in terms of multiplicative subgroup of modulo *p* for all prime factors *p* of *n*. We should note that a tight equidifference CAC of weight w is equivalent to a perfect $(w - 1)$ -shift code [\[9\]](#page--1-16) and a necessary and sufficient condition for the existence of a perfect $(w-1)$ -shift code in a finite abelian group has been known for $w=2$, 3 due to Levenshtein and Vinck [\[9\]](#page--1-16), and $w = 4$, 5 due to Munemasa [\[19\]](#page--1-17). However, those conditions in [\[4](#page--1-9)[,9,](#page--1-16)[17\]](#page--1-15) require to examine every prime factor of *n* to compute the exact value of *M^e* (*n*, 3). Recently, Wu and Fu [\[23\]](#page--1-14) showed that, for two specific series $n=2^{2k}+1$ and $2^{2^k}-1$ ($k\in\mathbb{N}$), there exists a tight code in CAC^e(n, 3), and Ma et al. [\[13\]](#page--1-11) presented an idea for constructing an optimal code in CAC^e(p, 3) and an optimal tight code in CAC(p, 3) for prime $p\geq 5$ with the formulae for $M(p,3)$ and *M^e* (*p*, 3). In [\[12\]](#page--1-18), the reader also can find some series of odd *n* for which *M^e* (*n*, 3) can be explicitly determined. However, these known results are just a fraction of the full settlement of *M*(*n*, 3) and *M^e* (*n*, 3) for odd *n*.

This article will show the following theorem on $M(3^{3f+1}p^e,3)$ for $f\geq 0, e\geq 1$ and a (non-Wieferich if $e\geq 2$) prime $p\equiv 3\ ({\rm mod}\ \ 8)$ with $p\neq 3$ by providing a construction of an optimal tight code in CAC(3 $^{3f+1}p^e$, 3), which cannot be obtained by previously known results including the recursive construction due to Ma et al. [\[13,](#page--1-11) Construction 5.1]. In fact, the odd code length *n* of an optimal (tight) CAC of weight 3 resulting from Construction 5.1 in [\[13\]](#page--1-11) cannot be divisible by 3 more than once, although they do not mention clearly this restriction in their construction.

Theorem 1.1. Let p be a prime satisfying $p \equiv 3 \pmod{8}$ with $p \neq 3$ and $v := v_3(\text{ord}_p(2)) \leq 1$, where $v_3(x)$ is the highest power of 3 dividing an integer x. Moreover, let $n:=3^d p^e$ for $d,e\in\mathbb N$ and further assume that p is a non-Wieferich prime if $e\geq 2$. Ij $d \equiv 1 \pmod{3}$, then there exists an optimal tight code $C \in CAC(n, 3)$ with

$$
|C| = M(n, 3) = \frac{n+1}{4} - \frac{(2 \cdot 3^{v}(d-1) + 3)\varepsilon s + d - 1}{6},
$$

where $s = (p - 1)/\text{ord}_p(2)$ *.*

Note that a *Wieferich prime* is a prime satisfying 2*^p*−¹ ≡ 1 (mod *p* 2). Dorais [\[2\]](#page--1-19) verified that, under 6.7 × 10¹⁵, there are only two Wieferich primes $p = 1093$ and 3511 (see also [\[21\]](#page--1-20)).

2. Preliminary

This section is devoted to the preparation for presenting a construction of a new series of optimal tight CAC of weight 3 in the next section.

For $n > 2$ and an integer *a* coprime to *n*, the *multiplicative order* of *a* modulo *n*, denoted by ord_{*n*}(*a*), is the smallest positive integer ℓ satisfying $a^{\ell} \equiv 1 \pmod{n}$. The smallest positive integer ℓ' satisfying $a^{\ell'} \equiv \pm 1 \pmod{n}$ is called the *multiplicative suborder* of *a* and denoted by sord_{*n*}(*a*). Thus ord_{*n*}(*a*) = 2 sord_{*n*}(*a*) or sord_{*n*}(*a*) depending on whether −1 ∈ $\langle \bar{a} \rangle$ in \mathbb{Z}_n^{\times} or not.

If $p \equiv 3 \pmod{8}$ is a prime, the second supplementary law of the quadratic reciprocity says that $2^{\frac{p-1}{2}} \equiv -1 \pmod{p}$, p which implies that $-1 \in (2)$ in \mathbb{Z}_p^\times and thus ord $p(2)=2$ sord $p(2)$. We can further mention that ord $p(2) \equiv 2 \pmod{4}$ holds since $\frac{p-1}{2}$ ≡ 1 (mod 4) and sord_p(2) | (*p* − 1)/2, which means that ord_{*p*}e(2) is even for any *e* ∈ N since ord_{*p*}(2) | ord_{*p*}e(2).

Throughout this article, the highest power of a prime *q* dividing a nonzero integer *x* is denoted by $v_q(x)$ and the group of units of \mathbb{Z}_n by \mathbb{Z}_n^\times , and, for an element $a\in\mathbb{Z}_n$ and an integer *x*, we may simply write *xa* or *ax* to denote $\overline{x}a\in\mathbb{Z}_n$. Furthermore, an integer *g* coprime to $3^{\ell}p^{r}$ such that $g\langle 2 \rangle = \{gx : x \in \langle 2 \rangle\} \subseteq \mathbb{Z}_{2^{\ell}}^{\times}$ $\frac{1}{3^{\ell}p^{r}}$ is a generator of $\mathbb{Z}_{3^{\ell}}^{\times}$ 3 ℓ*p ^r* /⟨2⟩ is simply called ''*a generator* of \mathbb{Z}_p^{\times} $\frac{1}{3\ell p^r}/\langle 2 \rangle$ ".

2.1. Order and suborder of 2

In this subsection, we collect some basic lemmas on elementary number theory for later use.

Lemma 2.1. For $e \in \mathbb{N}$, a prime p and an integer a coprime to p, there exists an integer $\epsilon \in [0, e)$ satisfying $\text{ord}_{p^e}(a) = p^e \text{ ord}_p(a)$.

Proof. The assertion follows from the isomorphism: $\mathbb{Z}_{p^e}^{\times} \simeq \mathbb{Z}_p^{\times} \times \mathbb{Z}_{p^{e-1}}$. \Box

For any odd prime *p* and $h \in \mathbb{N}$, it follows from [Lemma 2.1](#page-1-0) that ord_p $h(2) \equiv 2 \pmod{4}$ as long as ord_p(2) $\equiv 2 \pmod{4}$, and then sord $_{p^{h}}(2) = \text{ord}_{p^{h}}(2)/2$ holds, which implies $-1 \in \langle 2 \rangle$ in $\mathbb{Z}_{p^{h}}^{\times}$ $\sum\limits_{p^h}^{\times}$. Then the following can be easily observed.

Corollary 2.2. For given integers $\ell \ge 0$ and $r \ge 0$ with $(\ell, r) \ne (0, 0)$, and a prime $p \equiv 3 \pmod{8}$ with $p \ne 3$, it follows that $-1 \in \langle 2 \rangle$ *in* \mathbb{Z}_{2}^{\times} 3 ℓ*p r .*

Proof. Since $-1 \in \langle 2 \rangle$ both in $\mathbb{Z}_{2^k}^{\times}$ $\frac{x}{3\ell}$ and in $\mathbb{Z}_{p^r}^{\times}$, the assertion is immediately proved by the Chinese Remainder Theorem. \Box Download English Version:

<https://daneshyari.com/en/article/5776941>

Download Persian Version:

<https://daneshyari.com/article/5776941>

[Daneshyari.com](https://daneshyari.com)