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a b s t r a c t

In this article, a construction of an optimal tight conflict-avoiding code of length 3dpe and
weight 3 is shown for d ≡ 1 (mod 3), e ∈ N and a prime p ≡ 3 (mod 8) with p ̸= 3,
assuming that p is a non-Wieferich prime if e ≥ 2. This is a new series of optimal conflict-
avoiding code for which the number of codewords can be exactly determined.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A conflict-avoiding code (CAC) is known as a protocol sequence for transmitting data packets over a multiple-access
channel (collision channel) without feedback [5,8,10,15,20,22]. We save the technical description for such a channel model
to other literature [1,14].

Let Zn := Z/nZ and define the notation a as an element in Zn represented by an integer a ∈ {0, 1, . . . , n − 1}, although,
for simplicity, we will not distinguish between Zn and {0, 1, . . . , n − 1} (thus a and a) as long as its meaning is apparent
from the context. A conflict-avoiding code C of length n andweightw is definedmathematically as a collection ofw-subsets,
called codewords, of Zn such that ∆(x) ∩ ∆(y) = ∅ for any distinct codewords x, y ∈ C, where ∆(x) := {j − i | i, j ∈ x, i ̸= j}
as an ordinary set (not a multiset). Let

∆(C) :=

⋃
x∈C

∆(x),

where the union is taken as a multiset. Then, the definition of a CAC is equivalent to that ∆(C) covers every element of
Z∗
n := Zn\{0} at most once. A code C is said to be tight if ∆(C) covers every element of Z∗

n exactly once. The class of all the
CACs of length n and weight w is denoted by CAC(n, w). If a codeword x ∈ C is of form {0, i, . . . , (w − 1)i}, it is said to
be equidifference, and i is called a generator of the codeword x. If a code C consists only of equidifference codewords, then
C is called an equidifference code. The class of all CACs of length n and weight w is denoted by CAC(n, w), and that of all
equidifference CACs of length n and weight w is denoted by CACe(n, w). Obviously CACe(n, w) ⊆ CAC(n, w). The maximum
sizes of a CAC and an equidifference CAC of length n and weight w are denoted asM(n, w) and Me(n, w), respectively, i.e.,

M(n, w) = max{|C| | C ∈ CAC(n, w)} and Me(n, w) = max{|C| | C ∈ CACe(n, w)}.

A code C ∈ CAC(n, w) is said to be optimal if |C| = M(n, w). Especially when w = 3, a tight code in CACe(n, 3) is optimal.
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The main objective of the study on CACs has been to determine M(n, w) and Me(n, w), and several results can be found
in [3,4,7,10–13,16–18,23] for w = 3, 4. Especially, M(n, 3) was settled for even n by Levenshtein and Tonchev [10], Jimbo
et al. [7], Mishima et al. [16] and Fu et al. [3]. As for odd n, Momihara [17] gave a necessary and sufficient condition for
the existence of a tight code in CACe(n, 3) and an algorithm for finding admissible odd n. Later, the condition given by
Momihara [17] was restated by Fu et al. [4] in terms of multiplicative subgroup of modulo p for all prime factors p of n. We
should note that a tight equidifference CAC of weight w is equivalent to a perfect (w − 1)-shift code [9] and a necessary and
sufficient condition for the existence of a perfect (w−1)-shift code in a finite abelian group has been known forw = 2, 3 due
to Levenshtein and Vinck [9], and w = 4, 5 due to Munemasa [19]. However, those conditions in [4,9,17] require to examine
every prime factor of n to compute the exact value ofMe(n, 3). Recently, Wu and Fu [23] showed that, for two specific series
n = 22k

+ 1 and 22k
− 1 (k ∈ N), there exists a tight code in CACe(n, 3), and Ma et al. [13] presented an idea for constructing

an optimal code in CACe(p, 3) and an optimal tight code in CAC(p, 3) for prime p ≥ 5 with the formulae for M(p, 3) and
Me(p, 3). In [12], the reader also can find some series of odd n for which Me(n, 3) can be explicitly determined. However,
these known results are just a fraction of the full settlement ofM(n, 3) and Me(n, 3) for odd n.

This article will show the following theorem on M(33f+1pe, 3) for f ≥ 0, e ≥ 1 and a (non-Wieferich if e ≥ 2) prime
p ≡ 3 (mod 8)with p ̸= 3 by providing a construction of an optimal tight code in CAC(33f+1pe, 3), which cannot be obtained
by previously known results including the recursive construction due toMa et al. [13, Construction 5.1]. In fact, the odd code
length n of an optimal (tight) CAC of weight 3 resulting from Construction 5.1 in [13] cannot be divisible by 3 more than
once, although they do not mention clearly this restriction in their construction.

Theorem 1.1. Let p be a prime satisfying p ≡ 3 (mod 8)with p ̸= 3 and v := v3(ordp(2)) ≤ 1, where v3(x) is the highest power
of 3 dividing an integer x. Moreover, let n := 3dpe for d, e ∈ N and further assume that p is a non-Wieferich prime if e ≥ 2. If
d ≡ 1 (mod 3), then there exists an optimal tight code C ∈ CAC(n, 3) with

|C| = M(n, 3) =
n + 1
4

−
(2 · 3v(d − 1) + 3)es + d − 1

6
,

where s = (p − 1)/ordp(2).

Note that a Wieferich prime is a prime satisfying 2p−1
≡ 1 (mod p2). Dorais [2] verified that, under 6.7 × 1015, there are

only two Wieferich primes p = 1093 and 3511 (see also [21]).

2. Preliminary

This section is devoted to the preparation for presenting a construction of a new series of optimal tight CAC of weight 3
in the next section.

For n ≥ 2 and an integer a coprime to n, themultiplicative order of amodulo n, denoted by ordn(a), is the smallest positive
integer ℓ satisfying aℓ

≡ 1 (mod n). The smallest positive integer ℓ′ satisfying aℓ′

≡ ±1 (mod n) is called themultiplicative
suborder of a and denoted by sordn(a). Thus ordn(a) = 2 sordn(a) or sordn(a) depending on whether −1 ∈ ⟨a⟩ in Z×

n or not.
If p ≡ 3 (mod 8) is a prime, the second supplementary law of the quadratic reciprocity says that 2

p−1
2 ≡ −1 (mod p),

which implies that −1 ∈ ⟨2⟩ in Z×
p and thus ordp(2) = 2 sordp(2). We can further mention that ordp(2) ≡ 2 (mod 4) holds

since p−1
2 ≡ 1 (mod 4) and sordp(2) | (p − 1)/2, which means that ordpe (2) is even for any e ∈ N since ordp(2) | ordpe (2).

Throughout this article, the highest power of a prime q dividing a nonzero integer x is denoted by vq(x) and the group of
units of Zn by Z×

n , and, for an element a ∈ Zn and an integer x, we may simply write xa or ax to denote xa ∈ Zn. Furthermore,
an integer g coprime to 3ℓpr such that g⟨2⟩ = {gx : x ∈ ⟨2⟩} ⊆ Z×

3ℓpr is a generator of Z×

3ℓpr /⟨2⟩ is simply called ‘‘a generator
of Z×

3ℓpr /⟨2⟩’’.

2.1. Order and suborder of 2

In this subsection, we collect some basic lemmas on elementary number theory for later use.

Lemma2.1. For e ∈ N, a prime p and an integer a coprime to p, there exists an integer ϵ ∈ [0, e) satisfying ordpe (a) = pϵ ordp(a).

Proof. The assertion follows from the isomorphism: Z×

pe ≃ Z×
p × Zpe−1 . □

For any odd prime p and h ∈ N, it follows from Lemma 2.1 that ordph (2) ≡ 2 (mod 4) as long as ordp(2) ≡ 2 (mod 4),
and then sordph (2) = ordph (2)/2 holds, which implies −1 ∈ ⟨2⟩ in Z×

ph
. Then the following can be easily observed.

Corollary 2.2. For given integers ℓ ≥ 0 and r ≥ 0 with (ℓ, r) ̸= (0, 0), and a prime p ≡ 3 (mod 8) with p ̸= 3, it follows that
−1 ∈ ⟨2⟩ in Z×

3ℓpr .

Proof. Since −1 ∈ ⟨2⟩ both in Z×

3ℓ and in Z×

pr , the assertion is immediately proved by the Chinese Remainder Theorem. □
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