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a b s t r a c t

We investigate the family of 2-geodesic-transitive graphs which are locally connected. Let
Γ be such a graph. It is first shown that: for any integer d ≥ 2, there exists such a Γ of
diameter d; for any integer k ≥ 3, there exists such a Γ of valency k unless k is a prime and
k ≡ 3 (mod 4). Next, we completely determine the family of 2-geodesic-transitive graphs
which are locally isomorphic to mCn for some m ≥ 1, n ≥ 3. Finally, we give a reduction
result for the family of locally connected (G, 2)-geodesic-transitive graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph Γ , we use V (Γ ) and Aut(Γ ) to denote its
vertex set and automorphism group, respectively. For the group theoretic terminology not defined here we refer the reader
to [3,9,25]. An arc is an ordered pair of adjacent vertices. A regular graph Γ is said to be arc-transitive if its automorphism
group Aut(Γ ) is transitive on the set of arcs. A vertex triple (u, v, w) with v adjacent to both u and w is called a 2-geodesic
if u ̸= w and u, w are not adjacent. An arc-transitive graph Γ is said to be 2-geodesic-transitive if it has 2-geodesics, and
Aut(Γ ) is transitive on the set of 2-geodesics. The possible local structures of 2-geodesic-transitive graphs are characterized
in [7], and the families of 2-geodesic-transitive graphs of valency 4 and of prime valency have been determined in [6] and [8],
respectively. The graph in Fig. 1 is the octahedron which is the smallest locally connected 2-geodesic-transitive graph.

The diameter of a connected graph Γ is the maximal distance between any pair of vertices, and denoted by diam(Γ ). A
subgraph X of a graph Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they are adjacent in Γ .
When U ⊆ V (Γ ), we denote by [U] the subgraph of Γ induced by U . For a vertex u of Γ , we denote by Γi(u) the set of
vertices at distance i from u in Γ and we set Γ (u) = Γ1(u). Let Σ be a graph. For a positive integer m, the graph consisting
of m vertex disjoint copies of Σ is denoted by mΣ . Devillers, Li, Praeger and the author [7, Theorem 1.1] proved that if Γ is
a 2-geodesic-transitive graph of valency at least 2, then for a vertex u, either

(1) [Γ (u)] ∼= mKr for some integers m ≥ 2, r ≥ 1; or
(2) [Γ (u)] is a connected graph of diameter 2.
Further, Theorem1.4 of [7] shows that there is a bijection between the family of locally disconnected 2-geodesic transitive

graphsΓ and a certain family of partial linear spaces S(Γ ). In this paper, we study the family of 2-geodesic-transitive graphs
which are locally connected. Thus, for every vertex u, the induced subgraph [Γ (u)] is a connected graph of diameter 2.

Remark 1.1. A vertex triple (u, v, w) with v adjacent to both u and w is called a 2-arc if u ̸= w. A graph Γ is said to be
2-arc-transitive if its automorphism group Aut(Γ ) is transitive on both arcs and 2-arcs. The family of 2-arc-transitive graphs
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Fig. 1. Octahedron.

has been studied intensively, beginning with the seminal result of Tutte [21,22], for more work see [10–12,16,20,23,24].
By definition, each 2-geodesic of Γ is a 2-arc, but the converse is not true, for instance 2-arcs in a triangle of Γ are not
2-geodesics. Thus the family of non-complete 2-arc-transitive graphs is properly contained in the family of 2-geodesic-
transitive graphs.We remark that every locally connected 2-geodesic-transitive graph has girth 3, so it is not 2-arc-transitive.

If k is a prime such that k ≡ 3 (mod 4), then there is no 2-geodesic-transitive graph of valency k, see [8]. Note that
a 2-geodesic-transitive graph has diameter at least 2, and the cycle Cn with n ≥ 4 is not locally connected. We have the
following result.

Theorem 1.2. (1) For any integer d ≥ 2, there exists a locally connected 2-geodesic-transitive graph of diameter d.
(2) For any integer k ≥ 3, there exists a locally connected 2-geodesic-transitive graph of valency k unless k is a prime and

k ≡ 3 (mod 4).

The complement graph Σ of a graph Σ , is the graph with vertex V (Σ), and two vertices are adjacent in Σ if and only if
they are not adjacent in Σ . The families of locally connected 2-geodesic-transitive graphs having prime valency and twice a
prime valency were classified in [8] and [13], respectively. Our second theorem determines another special family of locally
connected 2-geodesic-transitive graphs, that is, the subgraph induced by the neighbourhood of a vertex is isomorphic to
mCn for somem ≥ 1, n ≥ 3.

Let Ω = {1, . . . , n}, where n ≥ 3, and let 1 ≤ k ≤ [
n
2 ], where [

n
2 ] is the integer part of n

2 . Then the Johnson graph J(n, k) is
the graph whose vertex set is the set of all k-subsets of Ω , and two vertices u and v are adjacent if and only if |u∩v| = k−1.
For two integersm ≥ 3, b ≥ 2, let Km[b] denote the complete multipartite graph, whose vertex set consisting ofm parts of size
b, with edges between all pairs of vertices from distinct parts. A graph Γ is said to be locally isomorphic to a graph Σ if, for
every u ∈ V (Γ ), the induced subgraph [Γ (u)] is isomorphic to Σ .

Theorem 1.3. Let Γ be a connected 2-geodesic-transitive graph which is locally isomorphic to mCn for some m ≥ 1, n ≥ 3. Then
Γ is one of J(5, 2), K(m+1)[3] or the icosahedron.

Let G be a group of permutations acting on Ω = V (Γ ). Let N be an intransitive normal subgroup of G and let B =

{B1, B2, . . . , Bn} be the set of N-orbits in Ω . Then the normal quotient ΓN of Γ is the graph with vertex set B such that {Bi, Bj}

is an edge of ΓN if and only if there exist x ∈ Bi, y ∈ Bj such that {x, y} is an edge of Γ . The graph Γ is said to be a cover of ΓN
if, for each edge {Bi, Bj} of ΓN and v ∈ Bi, we have |Γ (v) ∩ Bj| = 1.

A transitive permutation group G is said to be quasiprimitive, if every non-trivial normal subgroup of G is transitive. For
knowledge of quasiprimitive permutation groups refer to [20] and [19]. Praeger [20] divided the family of quasiprimitive
permutation groups into 8 distinct types:HolomorphAffine (HA), Almost Simple (AS), TwistedWreath product (TW), Product
Action (PA), Simple Diagonal (SD), Holomorph Simple (HS), Holomorph Compound (HC) and Compound Diagonal (CD).

Our third theorem is a reduction result on the family of locally connected 2-geodesic-transitive graphs. A graph Γ is said
to be (G, 2)-geodesic-transitive for some G ≤ Aut(Γ ), if Γ has at least one 2-geodesic, and G acts transitively on the vertex
set, the set of arcs and the set of 2-geodesics.

Theorem 1.4. Let Γ be a connected (G, 2)-geodesic-transitive graph which is also locally connected. Then one of the following
holds.

(1) Γ is isomorphic to Km[b] for some m ≥ 3, b ≥ 2.
(2) G is quasiprimitive on V (Γ ).
(3) G is not quasiprimitive on V (Γ ), and G has an intransitive normal subgroup N such that: Γ is a cover of ΓN , G/N

is quasiprimitive on V (ΓN ), and either ΓN is complete G/N-arc-transitive or ΓN is (G/N, 2)-geodesic-transitive and locally
connected.
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