Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Partitioning the bases of the union of matroids

Csongor Gy. Csehi*, András Recski

Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, H-1521 Budapest, Hungary

ARTICLE INFO

ABSTRACT

Article history: Received 29 March 2016 Received in revised form 5 December 2016 Accepted 11 December 2016 Available online 4 January 2017 Let $B = \bigcup_{i=1}^{n} B_i$ be a partition of base *B* in the union (or sum) of *n* matroids into independent sets B_i of M_i . We prove that every other base *B'* has such a partition where B_i and B'_i span the same set in M_i for i = 1, 2, ..., n.

© 2016 Elsevier B.V. All rights reserved.

Keywords: Matroid theory Union of matroids

1. Introduction

For the definitions and notations in matroid theory the reader is referred to [5] or [6]. In particular, let *E* denote the common underlying set of every matroid and let $r_1, r_2, ..., r_n$ denote the rank functions of the matroids $M_1, M_2, ..., M_n$, respectively. Throughout *M* will denote the union (or sum) $\bigvee_{i=1}^n M_i$ of these matroids, and *R* will denote the rank function of *M*. A subset $X \subseteq E$ is independent in *M* if and only if it arises as $X = \bigcup_{i=1}^n X_i$ with X_i independent in M_i for each *i*. Recall that

$$R(X) = \min_{Y \subseteq X} \left[\sum_{i=1}^{n} r_i(Y) + |X - Y| \right]$$

by the fundamental results of [1,4].

An element of the underlying set *E* of a matroid is a *loop* if it is dependent as a single element subset, and it is a *coloop* if it is contained in every base. We shall need the following observation [3], independently rediscovered in [2]:

Proposition 1. If *M* has no coloops, then $R(E) = \sum_{i=1}^{n} r_i(E)$.

The weak map relation is defined as follows: the matroid *B* is *freer* than *A* (denoted by $A \leq B$) if every independent set of *A* is independent in *B* as well. Clearly $M_j \leq \bigvee_{i=1}^n M_i$ for every j = 1, 2, ..., n and $A \leq B$ implies $A \vee C \leq B \vee C$ for every *C*.

Let $\sigma_i(X)$ denote the *closure* of a set $X \subseteq E$ in M_i , that is, $\sigma_i(X) = \{e | r_i(X \cup \{e\}) = r_i(X)\}$. Let $\sigma(X)$ denote the closure of X in M. A set $X \subseteq E$ is *closed* if $\sigma(X) = X$. The closed sets are also called *flats*. In particular, the set of loops, that is $\sigma(\emptyset)$ is the smallest and E is the largest flat. We shall need the following easy property of the closure function:

Proposition 2. Let $S_1, S_2 \subseteq E$ be independent subsets with $\sigma(S_1) = \sigma(S_2) = S$. Let, furthermore, $S_0 \subseteq E$ so that $S \cap S_0 = \emptyset$ and $S_1 \cup S_0$ is independent. Then $S_2 \cup S_0$ is also independent.

Corresponding author. *E-mail addresses:* cscsgy@cs.bme.hu (Cs.Gy. Csehi), recski@cs.bme.hu (A. Recski).

http://dx.doi.org/10.1016/j.disc.2016.12.011 0012-365X/© 2016 Elsevier B.V. All rights reserved.

*

Fig. 1. Graphs G_1 and G_2 of Example 3.

Table 1	
Good partitions and flats of	Example 3.

	<i>B</i> ₁	<i>B</i> ₂	F_1	F ₂
1	{ <i>a</i> , 4, 6, 7}	{ <i>b</i> , 5}	Ε	{1, 2, 3, 5}
2	$\{a, 5, 6, 7\}$	{ <i>b</i> , 4}	Ε	$\{1, 2, 3, 4\}$
3	$\{a, 4, 6\}$	{b, 5, 7}	$E - \{7\}$	$E - \{4\}$
4	$\{a, 4, 7\}$	$\{b, 5, 6\}$	$E - \{6\}$	$E - \{4\}$
5	$\{a, 5, 6\}$	$\{b, 4, 7\}$	$E - \{7\}$	$E - \{5\}$
6	{ <i>a</i> , 5, 7}	$\{b, 4, 6\}$	$E - \{6\}$	$E - \{5\}$
7	$\{a, 6, 7\}$	{b, 4, 5}	$E - \{4, 5\}$	$E - \{6, 7\}$
8	$\{a, 6\}$	$\{b, 4, 5, 7\}$	$\{1, 2, 3, 6\}$	Ε
9	$\{a, 7\}$	$\{b, 4, 5, 6\}$	$\{1, 2, 3, 7\}$	Ε

Fig. 2. A graph representing *M* of Example 3.

Proof. Observe that $|S_1| = |S_2|$ since both are independent and span the same subset *S*. Indirectly suppose that $r(S_2 \cup S_0) < |S_2| + |S_0| = |S_1| + |S_0| = |S_1 \cup S_0|$. Since $S_1 \cup S_0$ is independent, there exists an element $x \in S_1 - S_2$ so that $r(S_2 \cup S_0 \cup \{x\}) > r(S_2 \cup S_0)$. However, $x \in S_1 \subseteq S = \sigma(S_2)$ implies that $r(S_2 \cup \{x\}) = r(S_2)$, a contradiction. \Box

2. Partitioning the bases

Let *B* be a base of *M*. The partition $B_1, B_2, ..., B_n$ of *B* is a *good partition* if B_i is independent in M_i for i = 1, 2, ..., n. Let $F_i = \sigma_i(B_i)$ for every *i*. This collection of flats $F_1, F_2, ..., F_n$ depends on the actual good partition of *B*, as illustrated by the following example.

Example 3. If M_1 and M_2 are the cycle matroids of the graphs G_1 and G_2 of Fig. 1, respectively, then M will be the cycle matroid of the graph of Fig. 2. The base $B = \{1, 2, 4, 5, 6, 7\}$ of M has 54 good partitions, see the first two columns of Table 1, where each row represents six good partitions (put $a, b \in \{1, 2, 3\}, a \neq b$ in every possible way). These good partitions lead to 9 different collections of flats, see columns 3 and 4 of Table 1.

Surprisingly if we consider any other base of the union, the list of the possible collections of flats will always be the same.

Theorem 4. Let M_1, M_2, \ldots, M_n be matroids and let M be their union. Let B be a base of M with a good partition B_1, B_2, \ldots, B_n . For any base B' of M there is a good partition $\bigcup_{i=1}^{n} B'_i$ so that $\sigma_i(B_i) = \sigma_i(B'_i)$ for $i = 1, 2, \ldots, n$.

Proof. Suppose that B' is a base of the union with a good partition X_1, X_2, \ldots, X_n .

Let *A* denote the set of the non-coloop elements of the union. *B'* is independent in the union so $|B' \cap A| = R(B' \cap A)$. Clearly $R(B' \cap A) = R(A)$ since *B'* is a base in the union, and $\sigma(A) = A$. According to Proposition 1 $\sum_{i=1}^{n} r_i(A) = R(A)$. Now Download English Version:

https://daneshyari.com/en/article/5776949

Download Persian Version:

https://daneshyari.com/article/5776949

Daneshyari.com