A recursive algorithm for trees and forests

CrossMark

Song Guo, Victor J.W. Guo*
School of Mathematical Sciences, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China

A R T I CLE INFO

Article history:

Received 8 September 2016
Received in revised form 4 December 2016
Accepted 13 December 2016

Keywords:

Forests
Rooted trees
Bipartite trees
Tripartite trees
Plane trees
k-edge colored trees

Abstract

Trees or rooted trees have been generously studied in the literature. A forest is a set of trees or rooted trees. Here we give recurrence relations between the number of some kind of rooted forest with k roots and that with $k+1$ roots on $\{1,2, \ldots, n\}$. Classical formulas for counting various trees such as rooted trees, bipartite trees, tripartite trees, plane trees, k-ary plane trees, k-edge colored trees follow immediately from our recursive relations.

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction and notations

The famous Cayley's formula for counting trees states that the number of labeled trees on [n] is n^{n-2}. Clarke [7] first gives a refined version for Cayley's formula by setting up a recurrence relation. Erdélyi and Etherington [11] gives a bijection between semilabeled trees and partitions. This bijection was also discovered by Haiman and Schmitt [14]. A general bijective algorithm was given by Chen [4]. Aigner and Ziegler's book [1] collected four different proofs of Cayley's formula. We refer the reader to $[5,6,8,13,15,20$] for several recent results on the enumeration of trees. The goal of this paper is to establish simple linear recurrences between certain forests with roots $1, \ldots, k$ and forests with roots $1, \ldots, k+1$, from which one can deduce several classical results on counting trees.

The set of forests of k rooted trees on $[n]$ with roots $1, \ldots, k$ is denoted by \mathcal{F}_{n}^{k}. Suppose $F \in \mathcal{F}_{n}^{k}$ and x is a vertex of F, the subtree rooted at x is denoted by F_{x}. We say that a vertex y of F is a descendant of x, if y is a vertex of F_{x}, i.e., x is on the path from the root of T to the vertex y, and is denoted by $y \prec x$.

For any edge $e=(x, y)$ of a tree T in a forest F, if y is a vertex of T_{x}, we call x the father vertex of e, y the child vertex of e, x the father of y, and y a child of x, sometimes we also say e is out of x. The degree of a vertex x in a rooted tree T is the number of children of x, and is denoted by $\operatorname{deg}_{T}(x)$, or $\operatorname{deg}_{F}(x)$. As usual, a vertex with degree zero is called a leaf.

An unrooted labeled tree will be treated as a rooted tree in which the smallest vertex is chosen as the root. Moreover, if \mathcal{A} is a set of trees, then we will use $\mathcal{A}[P]$ to denote the subset of all elements of \mathcal{A} satisfying the condition P.

2. The fundamental recursion

One of our main results is as follows.

[^0]

Fig. 1. Example of Theorem 2.1 for $n=5$ and $k=3$.

Theorem 2.1. For $2 \leqslant k \leqslant n-1$, we have the following recurrence relation:

$$
\begin{equation*}
\left|\mathcal{F}_{n}^{k-1}[n \prec 1]\right|=n\left|\mathcal{F}_{n}^{k}[n \prec 1]\right| . \tag{2.1}
\end{equation*}
$$

Proof. Suppose $F \in \mathcal{F}_{n}^{k-1}[n \prec 1]$. First, remove the subtree F_{k} from F and add it to be a new tree in the forest. Second if n is not a descendant of 1 in the new forest, then n must be a descendant of k, and exchange labels of the vertices 1 and k. Thus, we obtain a forest $F^{\prime} \in \mathcal{F}_{n}^{k}[n \prec 1]$.

Conversely, for a forest $F^{\prime} \in \mathcal{F}_{n}^{k}[n \prec 1]$, we can attach F_{k}^{\prime} to any vertex of the other trees in F as a subtree, or attach F_{1}^{\prime} to any vertex of F_{k}^{\prime} as a subtree and exchange labels of the vertices 1 and k. The proof then follows from the fact that F^{\prime} has n vertices altogether (see Fig. 1).

It is clear that

$$
\begin{equation*}
\left|\mathcal{F}_{n}^{n-1}[n \prec 1]\right|=1 . \tag{2.2}
\end{equation*}
$$

We have the following corollaries.
Corollary 2.2 (Cayley [3]). The number of labeled trees on n vertices is n^{n-2}.
Corollary 2.3 (Cayley [3], Clarke [7]). The number of rooted trees on $n+1$ vertices with a specific root and root degree k is $\binom{n-1}{k-1} n^{n-k}$.

Proof. It follows from (2.1) and (2.2) that

$$
\left|\mathcal{F}_{n}^{k}[n \prec 1]\right|=n^{n-k-1}
$$

Exchanging the labels of the vertices j and 1 for $1<j \leqslant k<n$, we establish a bijection between $\mathcal{F}_{n}^{k}[n \prec 1]$ and $\mathcal{F}_{n}^{k}[n \prec j]$. Therefore,

$$
\left|\mathcal{F}_{n}^{k}\right|=k n^{n-k-1}
$$

from which one can see that the number of forests with n vertices and k trees is

$$
\binom{n}{k}\left|\mathcal{F}_{n}^{k}\right|=\binom{n}{k} k n^{n-k-1}=\binom{n-1}{k-1} n^{n-k}
$$

Remark. It is worth mentioning the third and fourth proofs of Cayley's formula in Aigner and Ziegler's book [1, Chapter 30]. The third proof in [1, Chapter 30], essentially due to Riordan [19] and Rényi [18], is as follows: Let $T_{n, k}$ denote the number of forests on $[n]$ consisting k trees where the vertices of $[k]$ appear in different trees. Consider such a forest F and suppose that 1 is adjacent to i vertices. Removing the vertex 1 , we obtain a forest of $k-1+i$ trees. As we can reconstruct F by first fixing i, then selecting the i neighbors of 1 , and then the forest $F \backslash 1$, this gives

$$
T_{n, k}=\sum_{i=0}^{n-k}\binom{n-k}{i} T_{n-1, k-1+i},
$$

from which we can prove Cayley's formula by induction on n.

https://daneshyari.com/en/article/5776950

Download Persian Version:
https://daneshyari.com/article/5776950

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: guosong77@hytc.edu.cn (S. Guo), jwguo@hytc.edu.cn (V.J.W. Guo).

