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a b s t r a c t

It is shown that for n ≥ 5 and r ≤
n−1
2 , if an (n,M, 2r + 1) binary code exists, then the

rth-order Reed–Muller code R(r, n) has s-PD-sets of the minimum size s + 1 for 1 ≤

s ≤ M − 1, and these PD-sets correspond to sets of translations of the vector space Fn
2. In

addition, for the first order Reed–Muller codeR(1, n), s-PD-sets of size s+1 are constructed
for s up to the bound ⌊

2n
n+1 ⌋ − 1. The results apply also to generalized Reed–Muller codes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In [15] it was shown that partial permutation decoding can be used for the first and second order Reed–Muller codes
R(1, n) and R(2, n), which are [2n, n + 1, 2n−1

]2 and [2n, 1 + n +
(n
2

)
, 2n−2

]2 codes, respectively, by obtaining s-PD-sets
for s = n − 1, n + 1, n − 3 (see Result 3 in Section 4). These sets were quite large, and consisted of special collections of
translations of Fn

2. Since the efficiency of permutation decoding is highest if the PD-set is small, the smallest possible such
set to correct a specific number of errors is sought; to correct s errors, the smallest size of a set is s + 1 according to the
Gordon–Schönheim bound [10,20]. Here we show that a set of translations of size M will provide an (M − 1)-PD-set for
R(r, n), for 1 ≤ r ≤

n−1
2 , provided that an (n,M, 2r + 1) binary code exists.

In addition, we use a construction due to [3] for R(1, n), which is an extension of a construction in [8] for simplex
codes, to describe s-PD-sets of the minimum size s + 1 for all s such that 1 ≤ s ≤ ⌊

2n
n+1⌋ − 1. The upper bound here is

greater than the size M of the code used for the construction using translations mentioned above, except in the case when
n = 2m

− 1.
Since there are many constructions of (n,M, 2r + 1) binary codes for r ≥ 1, for all n the method of Theorem 1, with

translations of Fn
2, will provide partial permutation decoding for large values of s and using the most efficient size decoding

set, i.e. of size s + 1. Note that the maximum number of errors that R(r, n) can correct is 2n−r−1
− 1. The maximum value

of s for which an s-PD-set of size s + 1 for R(r, n) can exist is Fn,r = ⌊
2n
d ⌋ − 1, where d =

∑r
i=0

(n
i

)
, (i.e. dim(R(r, n))), as is

shown in Lemma 1, Section 2.
The main theorem is:

Theorem 1. For n ≥ 5, 1 ≤ r ≤
n−1
2 , let C be an (n,M, 2r + 1) binary code. For each c ∈ C, let Tc denote the translation of

V = Fn
2 by c. Then PC = {Tc | c ∈ C} is an (M − 1)-PD-set of size M for R(r, n) using the information set In,r defined in Eq. (2).

For R(1, n), s-PD-sets of size s + 1 exist for 1 ≤ s ≤ ⌊
2n
n+1⌋ − 1.
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Note: 1. The results of the theorem easily extend to generalized Reed–Muller codes, RFq (ρ, n): see Section 7.
2. The special construction for R(1, n) was posted at arXiv.org (see full reference in the footnote at the end of Section 5)

while this paper was under review. The construction in that posting is virtually identical to the one in this paper.
In order to correct as many errors as possible using this method, we would likeM to be as large as possible. The number

A2(n, d) is defined to be the largest value of M for which there exists a binary (n,M, d) code. Tables of values and/or
bounds for A2(n, d) can be found in most coding theory text books, and for values of n up to 27 and 3 ≤ d ≤ 15 at
http://www.win.tue.nl/~aeb/codes/binary-1.html [5]. For our theorem, the sphere-packing bound gives an upper bound for
A2(n, 2r + 1) of ⌊2n/(

∑r
i=0

(n
r

)
)⌋. Linear (n,M, d) binary codes, for d ≥ 1 odd, are obtained for all suitably large n in [6]. For

R(1, n) we construct these s-PD-sets of size s + 1 for s up to the maximum value for which s-PD-sets of size s + 1 can exist,
viz. Fn = ⌊

2n
n+1⌋ − 1.

After describing general background concepts and terminology in Section 2, and information on the Reed–Muller codes
in Section 3, we prove the first part of Theorem 1 in Section 4 as Proposition 1. The construction of the s-PD-sets of size s+ 1
for 1 ≤ s ≤ ⌊

2n
n+1⌋−1 forR(1, n) is given as Corollary 4 in Section 5. Any computations were done with Magma [4,7] or GAP

[9], and a link to a Magma program to obtain some of these sets and to test their error correction ability is given in Section 6.
The extension to generalized Reed–Muller codes is briefly outlined in Section 7.

2. Background and terminology

The notation for codes is standard and can be found in [1]. For linear codes the notation [n, k, d]q will be used for a q-ary
code C of length n, dimension k, and minimum weight d, where the weight wt (v) of a vector v is the number of non-zero
coordinate entries. The distance, d(u, v), between two vectors u, v is wt(u−v), i.e. the number of coordinate places in which
they differ. The minimum distance of a code is the smallest distance between distinct codewords. For a code, not necessarily
linear, of length n containingM codewords, of minimum distance d, we write (n,M, d). A generator matrix for an [n, k, d]q
code C is a k × n matrix whose rows form a basis for C , and the dual code C⊥ is the orthogonal under the standard inner
product (, ), i.e. C⊥

= {v ∈ Fn
q | (v, c) = 0 ∀ c ∈ C}. A check matrix for C is a generator matrix for C⊥. The all-one vector is

denoted by ȷ.
Following [1, Definition 2.2.3], two linear codes over the same field are called equivalent if each can be obtained from the

other by permuting the coordinate positions and multiplying each coordinate by a non-zero field element. Our codes here
are all binary, i.e. over F2, so multiplication by field elements need not be taken into consideration, and equivalent codes
will be said to be isomorphic. An automorphism of a code C is an isomorphism from C to C , and the set of all these gives
the automorphism group of the code, written Aut(C). Any code is isomorphic to a code with generator matrix in so-called
standard form, i.e. the form [Ik | A]; a check matrix then is given by [−AT

| In−k]. The set of the first k coordinate positions
in the standard form is called an information set for the code, and the set of the last n − k coordinate positions is the
corresponding check set.

Permutation decodingwas developed byMacWilliams [17] and Prange [19] and involves finding a set of automorphisms
of a code called a PD-set. The method is described fully in MacWilliams and Sloane [18, Chapter 16, p. 513] and Huffman
[12, Section 8]. In [13,16] the definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then a PD-set for C is a set S of
automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the
check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by
at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a t-error-correcting [n, k, d]q code C with check matrix H
in standard form. Thus the generator matrix G = [Ik|A] and H = [−AT

|In−k], for some A, and the first k coordinate positions
correspond to the information symbols. Any vector v of length k is encoded as vG. Suppose x is sent and y is received and at
most t errors occur. Let S = {t1, . . . , tr} be the PD-set. Writing yti for the image of y under the automorphism ti, compute the
syndromes H(yti)T for i = 1, . . . , r until an i is found such that the weight of this vector is t or less. Compute the codeword
c that has the same information symbols as yti and decode y as ct−1

i .
Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to index the elements of the set S

by the set {1, 2, . . . , |S|} so that elements that will correct a small number of errors occur first. Thus if nested s-PD-sets are
found for all 1 < s ≤ t then we can order S as follows: find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 . . . ⊂ St and
arrange the PD-set S as a sequence in this order:

S = [S0, (S1 − S0), (S2 − S1), . . . , (St − St−1)].

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [10], from a formula due to Schönheim

[20], and quoted and proved in [12]:

http://www.win.tue.nl/%7Eaeb/codes/binary-1.html
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