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a b s t r a c t

The generalized Ramsey number R(H, K ) is the smallest positive integer n such that for any
graphGwith n vertices eitherG containsH as a subgraph or its complementG contains K as
a subgraph. Let Tn be a tree with n vertices and Fm be a fan with 2m + 1 vertices consisting
of m triangles sharing a common vertex. We prove a conjecture of Zhang, Broersma and
Chen form ≥ 9 that R(Tn, Fm) = 2n− 1 for all n ≥ m2

−m+ 1. Zhang, Broersma and Chen
showed that R(Sn, Fm) ≥ 2n for n ≤ m2

− m where Sn is a star on n vertices, implying that
the lower bound we show is in some sense tight. We also extend this result to unicyclic
graphs UCn, which are connected graphs with n vertices and a single cycle. We prove that
R(UCn, Fm) = 2n − 1 for all n ≥ m2

− m + 1 where m ≥ 18. In proving this conjecture
and extension, we present several methods for embedding trees in graphs, which may be
of independent interest.

Published by Elsevier B.V.

1. Introduction

Given two graphs H and K , the generalized Ramsey number R(H, K ) is the smallest positive integer n such that for any
graph G with n vertices, either G contains H as a subgraph or the complement G of G contains K as a subgraph. When
both H and K are complete graphs, R(H, K ) is the classical Ramsey number. Because classical Ramsey numbers are difficult
to determine, Chvátal and Harary proposed to study generalized Ramsey numbers of graphs other than complete graphs
through a series of papers in 1972 and 1973 [5–7].

Generalized Ramsey numbers have since been well studied for a variety of graphs, including trees and fans. Chvátal
determined the Ramsey number of trees versus complete graphs, showing that R(Tn, Km) = (n − 1)(m − 1) + 1 for positive
integers m and n [4]. Burr, Erdős, Faudree, Rousseau and Schelp determined the Ramsey number of large trees versus odd
cycles, showing that R(Tn, Cm) = 2n − 1 for odd m ≥ 3 and n ≥ 756m10 [3]. Recently, we showed this result is also
true for smaller trees satisfying n ≥ 25m [1]. Salman and Broersma determined the Ramsey number of paths versus fans,
finding R(Pn, Fm) for various ranges of n and m [11]. Shi determined the Ramsey number of cycles versus fans, showing that
R(Cn, Fm) = 2n− 1 for all n > 3m [12]. In [9], Li and Rousseau proved an upper bound on the Ramsey number of fans versus
complete graphs, showing

R(Fm, Kn) ≤ (1 + o(1))
n2

log n
.

A survey of Ramsey numbers and related lower bounds can be found in [10].
There have also been general lower bounds shown to hold for Ramsey numbers. In 1981, Burr proved the following lower

bound in terms of the chromatic number χ (G) of a graph G and its chromatic surplus s(G) –the minimum number of vertices
in a color class over all proper vertex colorings of G using χ (G) colors.
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Theorem1 (Burr [2]). If H is a connected graphwith n vertices and s(K ) is the chromatic surplus of the graph K , then for n ≥ s(K )
we have

R(H, K ) ≥ (n − 1)(χ (K ) − 1) + s(K ).

The Ramsey numbers of trees versus odd cycles, of cycles versus fans and of trees versus complete graphs determined
by Burr et al., Shi and Chvátal, respectively, achieve Burr’s lower bound. Note that for a fan or odd cycle K , χ (K ) = 3 and
s(K ) = 1 and thus Theorem1 implies that R(Tn, Fm) ≥ 2n−1 for allm and n ≥ s(K ) = 1. This lower bound can be seen directly
by considering the complete bipartite graph Kn−1,n−1. Since Kn−1,n−1 is triangle-free, it does not contain Fm as a subgraph.
Furthermore, Kn−1,n−1 consists of two connected components of size n − 1 and thus does not contain Tn as a subgraph.

In 2015, Zhang, Broersma and Chen showed that the lower bound from Theorem 1 is tight for large trees and stars versus
fans, proving the following two theorems. Here, Sn denotes a star on n vertices consisting of an independent set of n − 1
vertices all adjacent to a single vertex.

Theorem 2 (Zhang, Broersma, Chen [13]). R(Tn, Fm) = 2n − 1 for all integers m and n ≥ 3m2
− 2m − 1.

Theorem 3 (Zhang, Broersma, Chen [13]). R(Sn, Fm) = 2n − 1 for all integers n ≥ m2
− m + 1 and m ̸= 3, 4, 5, and this lower

bound is the best possible. Moreover, R(Sn, Fm) = 2n − 1 for n ≥ 6m − 6 and m = 3, 4, 5.

Because it is generally believed that R(Tn,G) ≤ R(Sn,G) for any graph G, Zhang, Broersma and Chen made the following
conjecture based on Theorem 3.

Conjecture 1 (Zhang, Broersma, Chen [13]). R(Tn, Fm) = 2n − 1 for all integers m ≥ 6 and n ≥ m2
− m + 1.

Theorem 3 yields that if n ≤ m2
− m then R(Sn, Fm) ≥ 2n, implying n ≥ m2

− m + 1 is the best achievable lower bound
on n in terms of m over which R(Tn, Fm) = 2n − 1 is true [13]. In this paper, we prove Conjecture 1 for the case m ≥ 9.
Specifically, we prove the following theorem.

Theorem 4. R(Tn, Fm) = 2n − 1 for all n ≥ m2
− m + 1 for m ≥ 9.

In [13], Zhang, Broersma and Chen also determined R(Tn, Kℓ−1 + mK2) as a corollary of Theorem 2. Here,mG denotes the
union ofm vertex-disjoint copies of G and G1 +G2 is the graph obtained by joining every vertex of G1 to every vertex of G2 in
G1 ∪G2. Zhang, Broersma and Chen identify R(Tn, Kℓ−1 +mK2) for n ≥ 3m2

−2m−1 by induction on ℓ, using Theorem 2 as a
base case. Their induction argument remains valid when Theorem 4 is used as the base case, yielding the following updated
version of their corollary.

Corollary 1 (Zhang, Broersma, Chen [13]). R(Tn, Kℓ−1 + mK2) = ℓ(n − 1) + 1 for ℓ ≥ 2 and n ≥ m2
− m + 1 where m ≥ 9.

We also extend Theorem 4 from trees to unicyclic graphs. Let UCn denote a particular connected graph with n vertices
and a single cycle—or equivalently a connected graph with n vertices and n edges. We prove the following result.

Theorem 5. R(UCn, Fm) = 2n − 1 for all n ≥ m2
− m + 1 for m ≥ 18.

Note that Theorem 5 implies Theorem 4 as a corollary in the case m ≥ 18. Despite this, we present our proofs of these
two theorems separately because our approach to Theorem 4 motivates our proof of Theorem 5 and because we require a
sufficiently different approach and more careful analysis to prove Theorem 4 for 9 ≤ m < 18. The next section provides
the notation and key lemmas that will be used in the proofs of Theorems 4 and 5. In the two subsequent sections, we prove
Theorems 4 and 5.

2. Preliminaries and lemmas

We first provide the notation we will adopt on proving Theorems 4 and 5. Let G be any simple graph. Here, dX (v) denotes
the degree of a vertex v in the set X ⊆ V (G) in G and dX (v) denotes the degree of v in X in the complement graph G. Similarly,
NX (v) and NX (v) denote the sets of neighbors of v in the set X in G and G, respectively. It is clear that dX (v) + dX (v) = |X |

for any X ⊆ V (G) not containing v and that dX (v) = |NX (v)| and dX (v) = |NX (v)|. We also extend this notation to NX (Y ) and
NX (Y ) for sets Y ⊆ V (G) disjoint from X . When the set X is omitted, it is implicitly V (G) where the graph G is either clear
from context or explicitly stated.We denote themaximumandminimumdegrees of a graphG as∆(G) and δ(G), respectively.
When G is bipartite and connected, we let the sets A(G) and B(G) denote the partite sets of G with V (G) = A(G) ∪ B(G) and
|A(G)| ≥ |B(G)|. In particular, this implies that |A(G)| ≥ |V (G)|/2. For a tree T , we let L(T ) denote the set of leaves of T . Also
note that if T is a tree then since T is bipartite, A(T ) and B(T ) are well-defined.

We now prove two lemmas that will be used throughout the proofs of Theorems 4 and 5. The first is a structural lemma
concerning the vertices of degree two in trees and will be crucial to our methods for embedding trees.

Lemma 1. Given a tree T and a subset F ⊆ V (T ), there is a set D satisfying:

(1) D ⊆ A(T ) and F ∩ D = ∅;
(2) each v ∈ D satisfies dT (v) = 2;
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