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a b s t r a c t

For a positive integer r and a vertex v of a graph G, let I(r)
G (v) denote the set of independent

sets of G that have exactly r elements and contain v. Motivated by a problem of Holroyd
and Talbot, Hurlbert and Kamat conjectured that for any r and any tree T , there exists a
leaf z of T such that |I(r)

T (v)| ≤ |I(r)
T (z)| for each vertex v of T . They proved the conjecture

for r ≤ 4. We show that for any integer k ≥ 3, there exists a tree Tk that has a vertex x
such that x is not a leaf of Tk, |I

(r)
Tk
(z)| < |I(r)

Tk
(x)| for any leaf z of Tk and any integer r with

5 ≤ r ≤ 2k + 1, and 2k + 1 is the largest integer s for which I(s)
Tk
(x) is non-empty.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote
sets or graphs, and calligraphic letters such as F to denote families (that is, sets whose members are sets themselves). The
set {1, 2, . . .} of positive integers is denoted by N. For anym, n ∈ N, the set {i ∈ N : m ≤ i ≤ n} is denoted by [m, n], and we
abbreviate [1, n] to [n]. For a set X , the family {A ⊆ X : |A| = r} of r-element subsets of X is denoted by

( X
r

)
. If x ∈ X and

F is a family of subsets of X , then the family {F ∈ F : x ∈ F} is denoted by F(x) and is called a star of F . Arbitrary sets are
assumed to be finite.

A graph G is a pair (X,Y), where X is a set, called the vertex set of G, and Y is a subset of
( X
2

)
and is called the edge set of

G. The vertex set of G and the edge set of G are denoted by V (G) and E(G), respectively. An element of V (G) is called a vertex
of G, and an element of E(G) is called an edge of G. We may represent an edge {v, w} by vw. If vw is an edge of G, then we
say that v is adjacent to w (in G). A vertex v of G is a leaf of G if it is adjacent to only one vertex of G.

If H is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then we say that G contains H .
If v1, v2, . . . , vn are the distinct vertices of a graph G with E(G) = {vivi+1 : i ∈ [n − 1]}, then G is called a (v1, vn)-path or

simply a path.
A graph G is a tree if |V (G)| ≥ 2 and G contains exactly one (v, w)-path for every v, w ∈ V (G) with v ̸= w.
Let G be a graph. A subset I of V (G) is an independent set of G if vw ̸∈ E(G) for every v, w ∈ I . Let I(r)

G denote the family
of all independent sets of G of size r . An independent set J of G is maximal if J ̸⊆ I for each independent set I of G such that
I ̸= J . The size of a smallest maximal independent set of G is denoted by µ(G).

Hurlbert and Kamat [11] conjectured that for any r ≥ 1 and any tree T , there exists a leaf z of T such that I(r)
T (z) is a star

of I(r)
T of maximum size.

Conjecture 1.1 ([11, Conjecture 1.25]). For any r ≥ 1 and any tree T , there exists a leaf z of T such that |I(r)
T (v)| ≤ |I(r)

T (z)| for
each v ∈ V (T ).
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Hurlbert and Kamat [11] also showed that the conjecture is true for r ≤ 4. In the next section, we show that for any
k ≥ 3, there exists a tree Tk that has a vertex x such that x is not a leaf of Tk, |I

(r)
Tk
(z)| < |I(r)

Tk
(x)| for any leaf z of Tk and any

r ∈ [5, 2k+1], and 2k+1 is the largest integer s for which I(s)
Tk
(x) is non-empty. At the time of finalizing this paper, it came to

the author’s attention that this was proved for k ≥ r2 by Baber [1], remarkably using the same construction for Tk; however,
the proof presented here differs in that it provides a partitioning argument by which only the structural difference between
two competing stars is quantified, and by which the full result is obtained.

Conjecture 1.1 was motivated by a problem of Holroyd and Talbot [8,10]. A family A is intersecting if every two sets in
A intersect. We say that I(r)

G has the star property if at least one of the largest intersecting subfamilies of I(r)
G is a star of I(r)

G .
Holroyd and Talbot introduced the problem of determining whether I(r)

G has the star property for a given graph G and an
integer r ≥ 1. The Holroyd–Talbot (HT) Conjecture [10, Conjecture 7] claims that I(r)

G has the star property if µ(G) ≥ 2r . By
the classical Erdős–Ko–Rado Theorem [5], the HT Conjecture is true if G has no edges. The HT Conjecture has been verified
for certain graphs [3,4,6,7,9–13]. It is also verified in [2] for any graph G with µ(G) sufficiently large depending on r; this is
the only result known for the case where G is a tree that is not a path (the problem for paths is solved in [9]), apart from the
above-mentioned result of Hurlbert and Kamat, and the fact that I(r)

G may not have the star property for certain values of r
(indeed, if G is the tree ({0} ∪ [n], {{0, i} : i ∈ [n]}) and 2 ≤ n/2 < r < n, then I(r)

G =
(

[n]
r

)
and

(
[n]
r

)
is intersecting). One

of the difficulties in trying to establish the star property lies in determining a largest star. The following counterexample to
Conjecture 1.1 indicates that the problem for trees is more difficult than is hoped.

2. The result

Let x0 = 0, x1 = 1, and x2 = 2. For any positive integer k, let yi = 2 + i for each i ∈ [2k], let zi = 2k + 2 + i for each
i ∈ [2k], and let Tk be the graph whose vertex set is

{x0, x1, x2} ∪ {yi : i ∈ [2k]} ∪ {zi : i ∈ [2k]}

and whose edge set is

{x0x1, x0x2} ∪ {x1yi : i ∈ [k]} ∪ {x2yi : i ∈ [k + 1, 2k]} ∪ {yizi : i ∈ [2k]}.

We remark that for the purpose of our result, the vertices x0, x1, x2, y1, . . . , y2k, z1, . . . , z2k of Tk could be any 4k+ 3 distinct
objects (that is, not necessarily the integers 0, 1, . . . , 4k + 2). What is important is that x0 is adjacent to x1 and x2, x1 is
adjacent to the k vertices y1, . . . , yk, x2 is adjacent to the k vertices yk+1, . . . , y2k, yi is adjacent to zi for each i ∈ [2k], and
there are no other adjacencies.

Theorem 2.1. Let k be a positive integer.
(a) The graph Tk is a tree, and the leaves of Tk are z1, . . . , z2k.
(b) The largest integer s such that I(s)

Tk
(x0) ̸= ∅ is 2k + 1.

(c) If k ≥ 3, then |I(r)
Tk
(z)| < |I(r)

Tk
(x0)| for any leaf z of Tk and any r ∈ [5, 2k + 1].

Proof. (a) is straightforward.
Let G = Tk. Let Y = {yi : i ∈ [2k]} and Z = {zi : i ∈ [2k]}.
We have {x0} ∪ Z ∈ I(2k+1)

G (x0). Suppose that S is a set in I(s)
G (x0). Thus, S \ {x0} ∈

( Y∪Z
s−1

)
and |(S \ {x0}) ∩ {yi, zi}| ≤ 1 for

each i ∈ [2k]. Therefore, s − 1 ≤ 2k, and hence s ≤ 2k + 1. Hence (b).
Suppose k ≥ 3 and r ∈ [5, 2k + 1]. Let J = I(r)

G . Let E = {I ∈ J : x0, z1 ∈ I}. We will compare the number |J (x0) \ E| of
sets in J that contain x0 but not z1, with the number |J (z1) \ E| of sets in J that contain z1 but not x0. Let

A1 = {I ∈ J (x0) : y1 ∈ I},
A2 = {I ∈ J (x0) : y1, z1 ̸∈ I},
B1 = {I ∈ J (z1) : x0 ̸∈ I, x1 ∈ I, x2 ̸∈ I},
B2 = {I ∈ J (z1) : x0 ̸∈ I, x1 ̸∈ I, x2 ∈ I},
B3 = {I ∈ J (z1) : x0 ̸∈ I, x1, x2 ∈ I},
B4 = {I ∈ J (z1) : x0, x1, x2 ̸∈ I}.

We have J (x0) = E ∪ A1 ∪ A2 and J (z1) = E ∪ B1 ∪ B2 ∪ B3 ∪ B4. Since y1z1 ∈ E(G), {y1, z1} ̸⊆ I for each I ∈ J . Thus, E ,
A1, and A2 are pairwise disjoint, and hence

|J (x0)| = |E| + |A1| + |A2|. (1)

Since E , B1, B2, B3, and B4 are pairwise disjoint,

|J (z1)| = |E| + |B1| + |B2| + |B3| + |B4|. (2)
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