ARTICLE IN PRESS

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Stars on trees

Peter Borg

Department of Mathematics, University of Malta, Malta

ARTICLE INFO

Article history:
Received 16 March 2016
Received in revised form 22 September 2016
Accepted 2 November 2016
Available online xxxx

Keywords: Star Tree Independent set

ABSTRACT

For a positive integer r and a vertex v of a graph G, let $\mathcal{I}_G^{(r)}(v)$ denote the set of independent sets of G that have exactly r elements and contain v. Motivated by a problem of Holroyd and Talbot, Hurlbert and Kamat conjectured that for any r and any tree T, there exists a leaf z of T such that $|\mathcal{I}_T^{(r)}(v)| \leq |\mathcal{I}_T^{(r)}(z)|$ for each vertex v of T. They proved the conjecture for $r \leq 4$. We show that for any integer $k \geq 3$, there exists a tree T_k that has a vertex x such that x is not a leaf of T_k , $|\mathcal{I}_{T_k}^{(r)}(z)| < |\mathcal{I}_{T_k}^{(r)}(x)|$ for any leaf z of T_k and any integer r with $1 \leq r \leq 2k+1$, and $1 \leq k+1$ is the largest integer $1 \leq r \leq 2k+1$, and $1 \leq r \leq 2k+1$ is the largest integer $1 \leq r \leq 2k+1$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote sets or graphs, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). The set $\{1, 2, \ldots\}$ of positive integers is denoted by \mathbb{N} . For any $m, n \in \mathbb{N}$, the set $\{i \in \mathbb{N} : m \le i \le n\}$ is denoted by [m, n], and we abbreviate [1, n] to [n]. For a set X, the family $\{A \subseteq X : |A| = r\}$ of r-element subsets of X is denoted by $\binom{X}{r}$. If $x \in X$ and \mathcal{F} is a family of subsets of X, then the family $\{F \in \mathcal{F} : x \in F\}$ is denoted by $\mathcal{F}(x)$ and is called a S-are assumed to be finite.

A graph G is a pair (X, \mathcal{Y}) , where X is a set, called the *vertex set of* G, and \mathcal{Y} is a subset of $\binom{X}{2}$ and is called the *edge set of* G. The vertex set of G and the edge set of G are denoted by V(G) and E(G), respectively. An element of V(G) is called a *vertex* of G, and an element of E(G) is called an *edge* of G. We may represent an edge $\{v, w\}$ by vw. If vw is an edge of G, then we say that v is *adjacent* to w (in G). A vertex v of G is a *leaf* of G if it is adjacent to only one vertex of G.

If *H* is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then we say that *G* contains *H*.

If v_1, v_2, \ldots, v_n are the distinct vertices of a graph G with $E(G) = \{v_i v_{i+1} : i \in [n-1]\}$, then G is called a (v_1, v_n) -path or simply a path.

A graph G is a tree if $|V(G)| \ge 2$ and G contains exactly one (v, w)-path for every $v, w \in V(G)$ with $v \ne w$.

Let G be a graph. A subset I of V(G) is an *independent set of* G if $vw \notin E(G)$ for every $v, w \in I$. Let $\mathcal{I}_G^{(r)}$ denote the family of all independent sets of G of size r. An independent set J of G is maximal if $J \nsubseteq I$ for each independent set I of G such that $I \neq J$. The size of a smallest maximal independent set of G is denoted by $\mu(G)$.

Hurlbert and Kamat [11] conjectured that for any $r \ge 1$ and any tree T, there exists a leaf z of T such that $\mathcal{I}_T^{(r)}(z)$ is a star of $\mathcal{I}_T^{(r)}$ of maximum size.

Conjecture 1.1 ([11, Conjecture 1.25]). For any $r \ge 1$ and any tree T, there exists a leaf z of T such that $|\mathcal{I}_T^{(r)}(v)| \le |\mathcal{I}_T^{(r)}(z)|$ for each $v \in V(T)$.

E-mail address: peter.borg@um.edu.mt.

http://dx.doi.org/10.1016/j.disc.2016.11.002

0012-365X/© 2016 Elsevier B.V. All rights reserved.

2

Hurlbert and Kamat [11] also showed that the conjecture is true for $r \leq 4$. In the next section, we show that for any $k \ge 3$, there exists a tree T_k that has a vertex x such that x is not a leaf of T_k , $|\mathcal{I}_{T_k}^{(r)}(z)| < |\mathcal{I}_{T_k}^{(r)}(x)|$ for any leaf z of T_k and any $r \in [5, 2k+1]$, and 2k+1 is the largest integer s for which $\mathcal{I}_{T_k}^{(s)}(x)$ is non-empty. At the time of finalizing this paper, it came to the author's attention that this was proved for $k \ge r^2$ by Baber [1], remarkably using the same construction for T_k ; however, the proof presented here differs in that it provides a partitioning argument by which only the structural difference between two competing stars is quantified, and by which the full result is obtained.

Conjecture 1.1 was motivated by a problem of Holroyd and Talbot [8,10]. A family A is intersecting if every two sets in \mathcal{A} intersect. We say that $\mathcal{I}_G^{(r)}$ has the *star property* if at least one of the largest intersecting subfamilies of $\mathcal{I}_G^{(r)}$ is a star of $\mathcal{I}_G^{(r)}$. Holroyd and Talbot introduced the problem of determining whether $\mathcal{I}_G^{(r)}$ has the star property for a given graph G and an integer $r \ge 1$. The Holroyd–Talbot (HT) Conjecture [10, Conjecture 7] claims that $\mathcal{I}_G^{(r)}$ has the star property if $\mu(G) \ge 2r$. By the classical Erdős-Ko-Rado Theorem [5], the HT Conjecture is true if G has no edges. The HT Conjecture has been verified for certain graphs [3,4,6,7,9-13]. It is also verified in [2] for any graph G with $\mu(G)$ sufficiently large depending on r; this is the only result known for the case where G is a tree that is not a path (the problem for paths is solved in [9]), apart from the above-mentioned result of Hurlbert and Kamat, and the fact that $\mathcal{I}_G^{(r)}$ may not have the star property for certain values of r (indeed, if *G* is the tree ($\{0\} \cup [n], \{\{0, i\} : i \in [n]\}$) and $2 \le n/2 < r < n$, then $\mathcal{I}_G^{(r)} = \binom{[n]}{r}$ and $\binom{[n]}{r}$ is intersecting). One of the difficulties in trying to establish the star property lies in determining a largest star. The following counterexample to Conjecture 1.1 indicates that the problem for trees is more difficult than is hoped.

2. The result

Let $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$. For any positive integer k, let $y_i = 2 + i$ for each $i \in [2k]$, let $z_i = 2k + 2 + i$ for each $i \in [2k]$, and let T_k be the graph whose vertex set is

$$\{x_0, x_1, x_2\} \cup \{y_i : i \in [2k]\} \cup \{z_i : i \in [2k]\}$$

and whose edge set is

$$\{x_0x_1, x_0x_2\} \cup \{x_1y_i : i \in [k]\} \cup \{x_2y_i : i \in [k+1, 2k]\} \cup \{y_iz_i : i \in [2k]\}.$$

We remark that for the purpose of our result, the vertices $x_0, x_1, x_2, y_1, \ldots, y_{2k}, z_1, \ldots, z_{2k}$ of T_k could be any 4k + 3 distinct objects (that is, not necessarily the integers $0, 1, \dots, 4k + 2$). What is important is that x_0 is adjacent to x_1 and x_2, x_1 is adjacent to the k vertices y_1, \ldots, y_k, x_2 is adjacent to the k vertices $y_{k+1}, \ldots, y_{2k}, y_i$ is adjacent to z_i for each $i \in [2k]$, and there are no other adjacencies.

Theorem 2.1. Let k be a positive integer.

- (a) The graph T_k is a tree, and the leaves of T_k are z_1, \ldots, z_{2k} . (b) The largest integer s such that $\mathcal{I}_{T_k}^{(s)}(x_0) \neq \emptyset$ is 2k+1. (c) If $k \geq 3$, then $|\mathcal{I}_{T_k}^{(r)}(z)| < |\mathcal{I}_{T_k}^{(r)}(x_0)|$ for any leaf z of T_k and any $r \in [5, 2k+1]$.

Proof. (a) is straightforward.

Let
$$G = T_k$$
. Let $Y = \{y_i : i \in [2k]\}$ and $Z = \{z_i : i \in [2k]\}$.

We have $\{x_0\} \cup Z \in \mathcal{I}_G^{(2k+1)}(x_0)$. Suppose that S is a set in $\mathcal{I}_G^{(s)}(x_0)$. Thus, $S \setminus \{x_0\} \in {Y \cup Z \choose s-1}$ and $|(S \setminus \{x_0\}) \cap \{y_i, z_i\}| \le 1$ for each $i \in [2k]$. Therefore, $s-1 \le 2k$, and hence $s \le 2k+1$. Hence (b). Suppose $k \ge 3$ and $r \in [5, 2k+1]$. Let $\mathcal{J} = \mathcal{I}_G^{(r)}$. Let $\mathcal{E} = \{I \in \mathcal{J} : x_0, z_1 \in I\}$. We will compare the number $|\mathcal{J}(x_0) \setminus \mathcal{E}|$ of sets in \mathcal{J} that contain x_0 but not z_1 , with the number $|\mathcal{J}(z_1) \setminus \mathcal{E}|$ of sets in \mathcal{J} that contain z_1 but not z_0 . Let

$$\begin{split} \mathcal{A}_1 &= \{ I \in \mathcal{J}(x_0) : y_1 \in I \}, \\ \mathcal{A}_2 &= \{ I \in \mathcal{J}(x_0) : y_1, z_1 \not\in I \}, \\ \mathcal{B}_1 &= \{ I \in \mathcal{J}(z_1) : x_0 \not\in I, x_1 \in I, x_2 \not\in I \}, \\ \mathcal{B}_2 &= \{ I \in \mathcal{J}(z_1) : x_0 \not\in I, x_1 \not\in I, x_2 \in I \}, \\ \mathcal{B}_3 &= \{ I \in \mathcal{J}(z_1) : x_0 \not\in I, x_1, x_2 \in I \}, \\ \mathcal{B}_4 &= \{ I \in \mathcal{J}(z_1) : x_0, x_1, x_2 \not\in I \}. \end{split}$$

We have $\mathcal{J}(x_0) = \mathcal{E} \cup \mathcal{A}_1 \cup \mathcal{A}_2$ and $\mathcal{J}(z_1) = \mathcal{E} \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4$. Since $y_1z_1 \in E(G)$, $\{y_1, z_1\} \not\subseteq I$ for each $I \in \mathcal{J}$. Thus, \mathcal{E} , A_1 , and A_2 are pairwise disjoint, and hence

$$|\mathcal{J}(x_0)| = |\mathcal{E}| + |\mathcal{A}_1| + |\mathcal{A}_2|. \tag{1}$$

Since \mathcal{E} , \mathcal{B}_1 , \mathcal{B}_2 , \mathcal{B}_3 , and \mathcal{B}_4 are pairwise disjoint,

$$|\mathcal{J}(z_1)| = |\mathcal{E}| + |\mathcal{B}_1| + |\mathcal{B}_2| + |\mathcal{B}_3| + |\mathcal{B}_4|. \tag{2}$$

Download English Version:

https://daneshyari.com/en/article/5776993

Download Persian Version:

https://daneshyari.com/article/5776993

<u>Daneshyari.com</u>