Note

Stars on trees

Peter Borg

Department of Mathematics, University of Malta, Malta

ARTICLE INFO

Article history:

Received 16 March 2016
Received in revised form 22 September 2016
Accepted 2 November 2016
Available online xxxx

Keywords:

Star
Tree
Independent set

Abstract

For a positive integer r and a vertex v of a graph G, let $\mathcal{I}_{G}^{(r)}(v)$ denote the set of independent sets of G that have exactly r elements and contain v. Motivated by a problem of Holroyd and Talbot, Hurlbert and Kamat conjectured that for any r and any tree T, there exists a leaf z of T such that $\left|\mathcal{I}_{T}^{(r)}(v)\right| \leq\left|\mathcal{I}_{T}^{(r)}(z)\right|$ for each vertex v of T. They proved the conjecture for $r \leq 4$. We show that for any integer $k \geq 3$, there exists a tree T_{k} that has a vertex x such that x is not a leaf of $T_{k},\left|\mathcal{I}_{T_{k}}^{(r)}(z)\right|<\left|\mathcal{I}_{T_{k}}^{(r)}(x)\right|$ for any leaf z of T_{k} and any integer r with $5 \leq r \leq 2 k+1$, and $2 k+1$ is the largest integer s for which $\mathcal{I}_{T_{k}}^{(s)}(x)$ is non-empty. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

We shall use small letters such as x to denote non-negative integers or elements of a set, capital letters such as X to denote sets or graphs, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). The set $\{1,2, \ldots\}$ of positive integers is denoted by \mathbb{N}. For any $m, n \in \mathbb{N}$, the set $\{i \in \mathbb{N}: m \leq i \leq n\}$ is denoted by [m, n], and we abbreviate $[1, n]$ to $[n]$. For a set X, the family $\{A \subseteq X:|A|=r\}$ of r-element subsets of \bar{X} is denoted by $\binom{X}{r}$. If $x \in X$ and \mathcal{F} is a family of subsets of X, then the family $\{F \in \mathcal{F}: x \in F\}$ is denoted by $\mathcal{F}(x)$ and is called a star of \mathcal{F}. Arbitrary sets are assumed to be finite.

A graph G is a pair (X, \mathcal{Y}), where X is a set, called the vertex set of G, and \mathcal{Y} is a subset of $\binom{X}{2}$ and is called the edge set of G. The vertex set of G and the edge set of G are denoted by $V(G)$ and $E(G)$, respectively. An element of $V(G)$ is called a vertex of G, and an element of $E(G)$ is called an edge of G. We may represent an edge $\{v, w\}$ by $v w$. If $v w$ is an edge of G, then we say that v is adjacent to w (in G). A vertex v of G is a leaf of G if it is adjacent to only one vertex of G.

If H is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then we say that G contains H.
If $v_{1}, v_{2}, \ldots, v_{n}$ are the distinct vertices of a graph G with $E(G)=\left\{v_{i} v_{i+1}: i \in[n-1]\right\}$, then G is called a $\left(v_{1}, v_{n}\right)$-path or simply a path.

A graph G is a tree if $|V(G)| \geq 2$ and G contains exactly one (v, w)-path for every $v, w \in V(G)$ with $v \neq w$.
Let G be a graph. A subset I of $V(G)$ is an independent set of G if $v w \notin E(G)$ for every $v, w \in I$. Let $\mathcal{I}_{G}^{(r)}$ denote the family of all independent sets of G of size r. An independent set J of G is maximal if $J \nsubseteq I$ for each independent set I of G such that $I \neq J$. The size of a smallest maximal independent set of G is denoted by $\mu(G)$.

Hurlbert and Kamat [11] conjectured that for any $r \geq 1$ and any tree T, there exists a leaf z of T such that $\mathcal{I}_{T}^{(r)}(z)$ is a star of $\mathcal{I}_{T}^{(r)}$ of maximum size.

Conjecture 1.1 ([11, Conjecture 1.25]). For any $r \geq 1$ and any tree T, there exists a leaf z of T such that $\left|\mathcal{I}_{T}^{(r)}(v)\right| \leq\left|\mathcal{I}_{T}^{(r)}(z)\right|$ for each $v \in V(T)$.

E-mail address: peter.borg@um.edu.mt.

Hurlbert and Kamat [11] also showed that the conjecture is true for $r \leq 4$. In the next section, we show that for any $k \geq 3$, there exists a tree T_{k} that has a vertex x such that x is not a leaf of $T_{k},\left|\mathcal{I}_{T_{k}}^{(r)}(z)\right|<\left|\mathcal{I}_{T_{k}}^{(r)}(x)\right|$ for any leaf z of T_{k} and any $r \in[5,2 k+1]$, and $2 k+1$ is the largest integer s for which $\mathcal{I}_{T_{k}}^{(s)}(x)$ is non-empty. At the time of finalizing this paper, it came to the author's attention that this was proved for $k \geq r^{2}$ by Baber [1], remarkably using the same construction for T_{k}; however, the proof presented here differs in that it provides a partitioning argument by which only the structural difference between two competing stars is quantified, and by which the full result is obtained.

Conjecture 1.1 was motivated by a problem of Holroyd and Talbot [8,10]. A family \mathcal{A} is intersecting if every two sets in \mathcal{A} intersect. We say that $\mathcal{I}_{G}^{(r)}$ has the star property if at least one of the largest intersecting subfamilies of $\mathcal{I}_{G}^{(r)}$ is a star of $\mathcal{I}_{G}^{(r)}$. Holroyd and Talbot introduced the problem of determining whether $\mathcal{I}_{G}^{(r)}$ has the star property for a given graph G and an integer $r \geq 1$. The Holroyd-Talbot (HT) Conjecture [10, Conjecture 7] claims that $\mathcal{I}_{G}^{(r)}$ has the star property if $\mu(G) \geq 2 r$. By the classical Erdős-Ko-Rado Theorem [5], the HT Conjecture is true if G has no edges. The HT Conjecture has been verified for certain graphs [3,4,6,7,9-13]. It is also verified in [2] for any graph G with $\mu(G)$ sufficiently large depending on r; this is the only result known for the case where G is a tree that is not a path (the problem for paths is solved in [9]), apart from the above-mentioned result of Hurlbert and Kamat, and the fact that $\mathcal{I}_{G}^{(r)}$ may not have the star property for certain values of r (indeed, if G is the tree $(\{0\} \cup[n],\{\{0, i\}: i \in[n]\})$ and $2 \leq n / 2<r<n$, then $\mathcal{I}_{G}^{(r)}=\binom{[n]}{r}$ and $\binom{[n]}{r}$ is intersecting). One of the difficulties in trying to establish the star property lies in determining a largest star. The following counterexample to Conjecture 1.1 indicates that the problem for trees is more difficult than is hoped.

2. The result

Let $x_{0}=0, x_{1}=1$, and $x_{2}=2$. For any positive integer k, let $y_{i}=2+i$ for each $i \in[2 k]$, let $z_{i}=2 k+2+i$ for each $i \in[2 k]$, and let T_{k} be the graph whose vertex set is

$$
\left\{x_{0}, x_{1}, x_{2}\right\} \cup\left\{y_{i}: i \in[2 k]\right\} \cup\left\{z_{i}: i \in[2 k]\right\}
$$

and whose edge set is

$$
\left\{x_{0} x_{1}, x_{0} x_{2}\right\} \cup\left\{x_{1} y_{i}: i \in[k]\right\} \cup\left\{x_{2} y_{i}: i \in[k+1,2 k]\right\} \cup\left\{y_{i} z_{i}: i \in[2 k]\right\} .
$$

We remark that for the purpose of our result, the vertices $x_{0}, x_{1}, x_{2}, y_{1}, \ldots, y_{2 k}, z_{1}, \ldots, z_{2 k}$ of T_{k} could be any $4 k+3$ distinct objects (that is, not necessarily the integers $0,1, \ldots, 4 k+2$). What is important is that x_{0} is adjacent to x_{1} and x_{2}, x_{1} is adjacent to the k vertices $y_{1}, \ldots, y_{k}, x_{2}$ is adjacent to the k vertices $y_{k+1}, \ldots, y_{2 k}, y_{i}$ is adjacent to z_{i} for each $i \in[2 k]$, and there are no other adjacencies.

Theorem 2.1. Let k be a positive integer.
(a) The graph T_{k} is a tree, and the leaves of T_{k} are $z_{1}, \ldots, z_{2 k}$.
(b) The largest integer s such that $\mathcal{I}_{T_{k}}^{(s)}\left(x_{0}\right) \neq \emptyset$ is $2 k+1$.
(c) If $k \geq 3$, then $\left|\mathcal{I}_{T_{k}}^{(r)}(z)\right|<\left|\mathcal{I}_{T_{k}}^{(r)}\left(x_{0}\right)\right|$ for any leaf z of T_{k} and any $r \in[5,2 k+1]$.

Proof. (a) is straightforward.
Let $G=T_{k}$. Let $Y=\left\{y_{i}: i \in[2 k]\right\}$ and $Z=\left\{z_{i}: i \in[2 k]\right\}$.
We have $\left\{x_{0}\right\} \cup Z \in \mathcal{I}_{G}^{(2 k+1)}\left(x_{0}\right)$. Suppose that S is a set in $\mathcal{I}_{G}^{(s)}\left(x_{0}\right)$. Thus, $S \backslash\left\{x_{0}\right\} \in\binom{Y \cup Z}{s-1}$ and $\left|\left(S \backslash\left\{x_{0}\right\}\right) \cap\left\{y_{i}, z_{i}\right\}\right| \leq 1$ for each $i \in[2 k]$. Therefore, $s-1 \leq 2 k$, and hence $s \leq 2 k+1$. Hence (b).

Suppose $k \geq 3$ and $r \in[5,2 k+1]$. Let $\mathcal{J}=\mathcal{I}_{G}^{(r)}$. Let $\mathcal{E}=\left\{I \in \mathcal{J}: x_{0}, z_{1} \in I\right\}$. We will compare the number $\left|\mathcal{J}\left(x_{0}\right) \backslash \mathcal{E}\right|$ of sets in \mathcal{J} that contain x_{0} but not z_{1}, with the number $\left|\mathcal{J}\left(z_{1}\right) \backslash \mathcal{E}\right|$ of sets in \mathcal{J} that contain z_{1} but not x_{0}. Let

$$
\begin{aligned}
& \mathcal{A}_{1}=\left\{I \in \mathcal{J}\left(x_{0}\right): y_{1} \in I\right\}, \\
& \mathcal{A}_{2}=\left\{I \in \mathcal{J}\left(x_{0}\right): y_{1}, z_{1} \notin I\right\}, \\
& \mathcal{B}_{1}=\left\{I \in \mathcal{J}\left(z_{1}\right): x_{0} \notin I, x_{1} \in I, x_{2} \notin I\right\}, \\
& \mathcal{B}_{2}=\left\{I \in \mathcal{J}\left(z_{1}\right): x_{0} \notin I, x_{1} \notin I, x_{2} \in I\right\}, \\
& \mathcal{B}_{3}=\left\{I \in \mathcal{J}\left(z_{1}\right): x_{0} \notin I, x_{1}, x_{2} \in I\right\}, \\
& \mathcal{B}_{4}=\left\{I \in \mathcal{J}\left(z_{1}\right): x_{0}, x_{1}, x_{2} \notin I\right\} .
\end{aligned}
$$

We have $\mathcal{J}\left(x_{0}\right)=\mathcal{E} \cup \mathcal{A}_{1} \cup \mathcal{A}_{2}$ and $\mathcal{J}\left(z_{1}\right)=\mathcal{E} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \cup \mathcal{B}_{4}$. Since $y_{1} z_{1} \in E(G),\left\{y_{1}, z_{1}\right\} \nsubseteq I$ for each $I \in \mathcal{J}$. Thus, \mathcal{E}, \mathcal{A}_{1}, and \mathcal{A}_{2} are pairwise disjoint, and hence

$$
\begin{equation*}
\left|\mathcal{J}\left(x_{0}\right)\right|=|\mathcal{E}|+\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right| \tag{1}
\end{equation*}
$$

Since $\mathcal{E}, \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$, and \mathcal{B}_{4} are pairwise disjoint,

$$
\begin{equation*}
\left|\mathcal{J}\left(z_{1}\right)\right|=|\mathcal{E}|+\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right|+\left|\mathcal{B}_{3}\right|+\left|\mathcal{B}_{4}\right| . \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/5776993

Download Persian Version:
https://daneshyari.com/article/5776993

Daneshyari.com

