ARTICLE IN PRESS

Discrete Mathematics (

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A large family of cospectral Cayley graphs over dihedral groups

Alireza Abdollahi^{a,b,*}, Shahrooz Janbaz^c, Meysam Ghahramani^c

^a Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

^b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

^c Department of Mathematics, Malek Ashtar University of Technology, Shahin Shar, Isfahan 83145-115, Iran

ARTICLE INFO

Article history: Received 23 January 2016 Received in revised form 25 August 2016 Accepted 12 September 2016 Available online xxxx

Keywords: Cayley graph Spectrum of a graph Cospectral graph

1. Introduction

Let *G* be a finite group and *S* be an inverse closed subset, $S = S^{-1} = \{s^{-1} : s \in S\}$, of the set $G \setminus \{e\}$, where *e* denotes the identity element of the group *G*. The Cayley graph Cay(G, S) is the graph whose vertex set is *G* and two vertices $a, b \in G$ are adjacent whenever $ab^{-1} \in S$. The adjacency spectrum of graph Γ , which is denoted by $Spec(\Gamma)$, is the multiset of eigenvalues of its adjacency matrix. Two graphs Γ and Γ' are called cospectral if $Spec(\Gamma) = Spec(\Gamma')$, and for these two cospectral graphs, we say Γ' is a cospectral mate for Γ . Finding large families of cospectral graphs with special properties is a difficult task and have been investigated in numerous articles [2,5-12]. For more details about cospectral graphs and related topics one can see [1,3,13] and references therein. In [12], by using the Seidel switching, a cospectral family \mathcal{F}_n of size greater than $\frac{2^{n/6}}{80}$ of 8-regular simple graphs on *n* points, for n > 8, has been constructed. By some general techniques such as NEPS product or special types of switching (for example GM-switching), large families of cospectral graphs have been constructed [6,10,11]. In contrast, we know of only the papers [2,5,9] in which cospectral Cayley graphs are presented. One of the most interesting results is by Babai [5], who showed that, for each integer number $k, k \ge 2$, and each prime number p, p > 64k, there are k pairwise non-isomorphic cospectral Cayley graphs over the dihedral group D_{2p} . Also, in [9], the authors constructed some non-isomorphic cospectral Cayley graphs over the group $PSL_d(\mathbb{F}_q)$, for some special values of dand q. Recently, in [2], cospectral Cayley graphs over finite groups are studied and infinite families of non-isomorphic Cayley graphs over finite groups are constructed.

In [2], for each prime number $p \ge 13$, the authors gave two non-isomorphic 6-regular cospectral Cayley graphs over the dihedral group D_{2p} .

In this paper, by generalizing the construction method of cospectral Cayley graphs over dihedral groups which is introduced in [2], we construct a large family of non-isomorphic cospectral Cayley graphs over the dihedral group D_{2p} , $p \ge 23$ prime. Our construction shows that the total number of non-isomorphic cospectral Cayley graphs over the dihedral group D_{2p} is exponential in terms of p.

http://dx.doi.org/10.1016/j.disc.2016.09.016 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: A. Abdollahi, et al., A large family of cospectral Cayley graphs over dihedral groups, Discrete Mathematics (2016), http://dx.doi.org/10.1016/j.disc.2016.09.016

ABSTRACT

The adjacency spectrum of a graph Γ , which is denoted by $Spec(\Gamma)$, is the multiset of eigenvalues of its adjacency matrix. We say that two graphs Γ and Γ' are cospectral if $Spec(\Gamma) = Spec(\Gamma')$. In this paper for each prime number $p, p \ge 23$, we construct a large family of cospectral non-isomorphic Cayley graphs over the dihedral group of order 2*p*. © 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran E-mail addresses: a.abdollahi@math.ui.ac.ir (A. Abdollahi), shjanbaz@mut-es.ac.ir (S. Janbaz), meysam.ghahramani.cc@gmail.com (M. Ghahramani).

2

ARTICLE IN PRESS

A. Abdollahi et al. / Discrete Mathematics 🛚 (💵 🖿) 💵 – 💵

Our main results are as follows:

Theorem 1.1. Let $p \ge 23$ be a prime number. Then for each integer number d, $6 \le d \le 2p - 7$, there exist at least two non-isomorphic cospectral d-regular Cayley graphs over the dihedral group D_{2p} .

Theorem 1.2. Let $p \ge 23$ be a prime number, d be a positive integer such that $6 \le d \le p + 6$ and $\overline{d} = 2p - d - 1$. Then there exist $C(\frac{p-1}{2}, \lfloor \frac{d}{2} \rfloor - 3)$ pairwise non-isomorphic cospectral d-regular (\overline{d} -regular) Cayley graphs over the dihedral group D_{2p} .

2. Preliminaries

In the following, we state some definitions and results which are needed in the sequel. For more details one can see [2,5]. Let $p \ge 13$ be a prime number and $D_{2p} = \langle \sigma, \tau | \sigma^2 = \tau^p = 1, (\sigma \tau)^2 = 1 \rangle$ denotes the dihedral group of order 2*p*. Any inverse closed subset *S* of $D_{2p} \setminus \{e\}$, can be written as follows:

$$S = \{\tau^{k_1}, \dots, \tau^{k_a}\} \cup \{\tau^{l_1}\sigma, \dots, \tau^{l_b}\sigma\}$$

$$\tag{1}$$

for some uniquely determined integers $k_1, \ldots, k_a, 0 < k_1 < \cdots < k_a \le p - 1$, and $l_1, \ldots, l_b, 0 \le l_1 < \cdots < l_b \le p - 1$; the latter holds: for p is odd and so every element of order 2 in D_{2p} has a unique form as $\tau^i \sigma$ for some unique integer $i \in \{0, \ldots, p - 1\}$.

Remark 2.1. By the above notation (1), we denote $S_{\sigma} := \{l_1, \ldots, l_b\}$ and $S_{\tau} := \{k_1, \ldots, k_a\}$. Note that integers in S_{σ} correspond to elements of order 2 in *S*.

Theorem 2.2 (Corollary 4.2 of [5]). Let n be an odd integer and for each integer number $c, 0 \le c \le n - 1$, $\beta(c)$ denotes the number of solutions of the congruence

 $x-y \equiv c \mod n, x, y \in S_{\sigma} = \{l_1, \ldots, l_b\}.$

Then, the set $S_{\tau} = \{k_1, \ldots, k_a\}$ and the function β determine the spectrum of the Cayley graph $\Gamma_S = Cay(D_{2n}, S)$.

The automorphism groups of the dihedral groups are easy to describe:

Theorem 2.3. Suppose n > 2 is an integer and D_{2n} is the dihedral group of order 2n. Then the automorphism group of D_{2n} , which is denoted by $Aut(D_{2n})$, is isomorphic to $\mathbb{Z}_n^{\times} \ltimes \mathbb{Z}_n$ and for an arbitrary automorphism of D_{2n} such as $\alpha_{s,t}$, $s \in \mathbb{Z}_n^{\times}$ and $t \in \mathbb{Z}_n$, we have $\alpha_{s,t}(\tau^i \sigma) = \tau^{is+t} \sigma$ and $\alpha_{s,t}(\tau^i) = \tau^{is}$.

The dihedral group D_{2p} , *p* a prime number, is a CI-group [4], which means:

Theorem 2.4 (Theorem 5.1 of [5]). The two Cayley graphs $\Gamma_S = Cay(D_{2p}, S)$ and $\Gamma_T = Cay(D_{2p}, T)$ of D_{2p} (p prime) are isomorphic if and only if there is an automorphism α of D_{2p} which maps S onto T.

3. Proofs of main results

In this section, first we give some lemmas which are needed to prove our main results.

Theorem 3.1 (Theorem 1.3 of [2]). Let $p \ge 13$ be a prime number and D_{2p} be the dihedral group of order 2p. Suppose $S = \{\sigma, \tau\sigma, \tau^2\sigma, \tau^6\sigma, \tau^8\sigma, \tau^{11}\sigma\}$ and $T = \{\sigma, \tau^2\sigma, \tau^4\sigma, \tau^5\sigma, \tau^{10}\sigma, \tau^{11}\sigma\}$. Then the Cayley graphs $\Gamma_S = Cay(D_{2p}, S)$ and $\Gamma_T = Cay(D_{2p}, T)$ are non-isomorphic and cospectral.

Lemma 3.2. Let $p \ge 23$ be a prime number and D_{2p} be the dihedral group. If $S' = \{\sigma, \tau\sigma, \tau^5\sigma, \tau^7\sigma, \tau^8\sigma, \tau^{10}\sigma, \tau^{12}\sigma\}$ and $T' = \{\sigma, \tau\sigma, \tau^2\sigma, \tau^5\sigma, \tau^7\sigma, \tau^9\sigma, \tau^{12}\sigma\}$, then the two Cayley graphs $\Gamma_{S'} = Cay(D_{2p}, S')$ and $\Gamma_{T'} = Cay(D_{2p}, T')$ are non-isomorphic and cospectral.

Proof. We can see that two sets S'_{τ} and T'_{τ} are empty. Also, we have $S'_{\sigma} = \{0, 1, 5, 7, 8, 10, 12\}$ and $T'_{\sigma} = \{0, 1, 2, 5, 7, 9, 12\}$. By Theorem 2.2, the two Cayley graphs $\Gamma_{S'}$ and $\Gamma_{T'}$ are cospectral, since two multisets $S'_{\sigma} - S'_{\sigma} := \{x - y \mid x, y \in S'_{\sigma}\}$ and $T'_{\sigma} - T'_{\sigma} := \{x - y \mid x, y \in T'_{\sigma}\}$ are equal. Now we prove that the two graphs $\Gamma_{S'}$ and $\Gamma_{T'}$ are not isomorphic. To the contrary, suppose that $\Gamma_{S'}$ and $\Gamma_{T'}$ are isomorphic. Since the dihedral group D_{2p} is Cl-group (see Theorem 2.4), there exists an automorphism $\alpha_{s,t} = \alpha \in Aut(D_{2p})$, such that $S' = (T')^{\alpha}$. Therefore, for some suitable integers t and $s, 0 \le t \le p - 1$ and $1 \le s \le p - 1$, we have

$$(T'_{\alpha})^{\alpha} = \{t = a_1, t + s = a_2, t + 2s = a_3, t + 5s = a_4, t + 7s = a_5, t + 9s = a_6, t + 12s = a_7\},$$
(2)

Please cite this article in press as: A. Abdollahi, et al., A large family of cospectral Cayley graphs over dihedral groups, Discrete Mathematics (2016), http://dx.doi.org/10.1016/j.disc.2016.09.016

Download English Version:

https://daneshyari.com/en/article/5777006

Download Persian Version:

https://daneshyari.com/article/5777006

Daneshyari.com