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1. Introduction

Let G be a finite group and S be an inverse closed subset, S = S~! = {s~! : s € S}, of the set G \ {e}, where e denotes
the identity element of the group G. The Cayley graph Cay(G, S) is the graph whose vertex set is G and two verticesa, b € G
are adjacent whenever ab~! e S. The adjacency spectrum of graph I', which is denoted by Spec(I"), is the multiset of
eigenvalues of its adjacency matrix. Two graphs I" and I’ are called cospectral if Spec(I") = Spec(I"’), and for these two
cospectral graphs, we say I'’ is a cospectral mate for I". Finding large families of cospectral graphs with special properties
is a difficult task and have been investigated in numerous articles [2,5-12]. For more details about cospectral graphs and
related topics one can see [1,3,13] and references therein. In [12], by using the Seidel switching, a cospectral family 7, of
size greater than % of 8-regular simple graphs on n points, for n > 8, has been constructed. By some general techniques
such as NEPS product or special types of switching (for example GM-switching), large families of cospectral graphs have
been constructed [6,10,11]. In contrast, we know of only the papers [2,5,9] in which cospectral Cayley graphs are presented.
One of the most interesting results is by Babai [5], who showed that, for each integer number k, k > 2, and each prime
number p, p > 64k, there are k pairwise non-isomorphic cospectral Cayley graphs over the dihedral group Dy,. Also, in [9],
the authors constructed some non-isomorphic cospectral Cayley graphs over the group PSLq(F,), for some special values of d
and q. Recently, in [2], cospectral Cayley graphs over finite groups are studied and infinite families of non-isomorphic Cayley
graphs over finite groups are constructed.

In [2], for each prime number p > 13, the authors gave two non-isomorphic 6-regular cospectral Cayley graphs over the
dihedral group D;.

In this paper, by generalizing the construction method of cospectral Cayley graphs over dihedral groups which is
introduced in [2], we construct a large family of non-isomorphic cospectral Cayley graphs over the dihedral group D,,,p > 23
prime. Our construction shows that the total number of non-isomorphic cospectral Cayley graphs over the dihedral group
D,, is exponential in terms of p.
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Our main results are as follows:

Theorem 1.1. Let p > 23 be a prime number. Then for each integer number d, 6 < d < 2p — 7, there exist at least two
non-isomorphic cospectral d-regular Cayley graphs over the dihedral group D-,.

Theorem 1.2. Let p > 23 be a prime number, d be a positive integer such that 6 < d < p + 6 and d = 2p — d — 1. Then there
exist C( %, L%J — 3) pairwise non-isomorphic cospectral d-regular (d-regular) Cayley graphs over the dihedral group D,

2. Preliminaries

In the following, we state some definitions and results which are needed in the sequel. For more details one can see [2,5].
Let p > 13 be a prime number and D,, = (0, 7 | 0?2 = 1P =1, (o7)* = 1) denotes the dihedral group of order 2p. Any
inverse closed subset S of Dy, \ {e}, can be written as follows:

s={M, ... tfu(che, ..., the) (1)

for some uniquely determined integers ky, ..., k;, 0 < k1 < --- < ks < p—1,and 11,...,11,,0 <h<---<lhL=<p-—1,
the latter holds: for p is odd and so every element of order 2 in D, has a unique form as t'c for some unique integer
ie{0,...,p—1}L

Remark 2.1. By the above notation (1), we denote S, := {l1,...,l,} and S; := {kq,..., ks}. Note that integers in S,
correspond to elements of order 2 in S.

Theorem 2.2 (Corollary 4.2 of [5]). Let n be an odd integer and for each integer number ¢, 0 < ¢ < n — 1, B(c) denotes the
number of solutions of the congruence

x—y=c mod n, x,yeS, ={l,..., L}
Then, the set S, = {k1, ..., kq} and the function 8 determine the spectrum of the Cayley graph I's = Cay(Dap, S).

The automorphism groups of the dihedral groups are easy to describe:

Theorem 2.3. Suppose n > 2 is an integer and D,,, is the dihedral group of order 2n. Then the automorphism group of D,p,, which
is denoted by Aut(Dyy), is isomorphic to Z x Z, and for an arbitrary automorphism of Dy, such as as,, s € Z; and t € Zy, we
have as (t'o) = t™"o and o, (t') = 5.

The dihedral group D, p a prime number, is a CI-group [4], which means:

Theorem 2.4 (Theorem 5.1 of [5]). The two Cayley graphs I's = Cay(D,p, S) and I't = Cay(D,p, T) of D, (p prime) are isomorphic
if and only if there is an automorphism « of D, which maps S onto T.

3. Proofs of main results
In this section, first we give some lemmas which are needed to prove our main results.

Theorem 3.1 (Theorem 1.3 of [2]). Let p > 13 be a prime number and D,, be the dihedral group of order 2p. Suppose
S = {o,10,7%0,1%, 1%, 1o} and T = {0, 1?0, t%0, %0, %, t'10}. Then the Cayley graphs I's = Cay(Day, S) and
I'T = Cay(D,p, T) are non-isomorphic and cospectral.

Lemma 3.2. Let p > 23 be a prime number and D,, be the dihedral group. If S' = {0, 10,70, 170,180, 1'%, 110}
and ' = {0, 710,1%0,7%0, 1’0, 1%, v'%0}, then the two Cayley graphs I'y = Cay(Dap,S’) and I'm = Cay(Dop, T') are

non-isomorphic and cospectral.

N

Proof. We can see that two sets S, and T/ are empty. Also, we have S, = {0, 1,5,7,8,10,12}and T, = {0, 1,2,5,7,9, 12}.
By Theorem 2.2, the two Cayley graphs Iy and I are cospectral, since two multisets S, — S/ = {x —y | x,y € S_}
and T, — T, := {x —y | x,y € T.} are equal. Now we prove that the two graphs Iy and I+ are not isomorphic. To the
contrary, suppose that I's and I are isomorphic. Since the dihedral group Dy, is CI-group (see Theorem 2.4), there exists
an automorphism o = o € Aut(Dyp), such that S” = (T")*. Therefore, for some suitable integers t ands,0 <t < p —1and
1<s<p-—1,wehave

(T ={t=a,t+s=ay, t+2s=as,t +55=as, t +7s=as,t +9s = ag, t + 125 = a7}, (2)
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