The strong chromatic index of ($3, \Delta$)-bipartite graphs

Mingfang Huang ${ }^{\mathrm{a}}$, Gexin Yu^{b}, Xiangqian Zhou ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, School of Science, Wuhan University of Technology, China
${ }^{\mathrm{b}}$ Department of Mathematics, The College of William and Mary, Williamsburg, VA 23185, United States
${ }^{\text {c }}$ Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States

ARTICLE INFO

Article history:

Received 14 June 2016
Received in revised form 3 October 2016
Accepted 25 October 2016
Available online xxxx

Keywords:

Bipartite graph
Strong edge-coloring
Induced matching

Abstract

A strong edge-coloring of a graph $G=(V, E)$ is a partition of its edge set E into induced matchings. We study bipartite graphs with one part having maximum degree at most 3 and the other part having maximum degree Δ. We show that every such graph has a strong edge-coloring using at most 3Δ colors. Our result confirms a conjecture of Brualdi and Quinn Massey (1993) for this class of bipartite graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this article are assumed to be simple and undirected. Let G be a simple undirected graph. A proper edge-coloring of G is an assignment of colors to the edges such that no two adjacent edges have the same color. Clearly, every coloring class is a matching of G. However, these matchings may not be induced. If one requires each color class to be an induced matching, that leads to the notion of strong edge-coloring, first introduced by Fouquet and Jolivet [5]. A strong edge-coloring of a graph G is a proper edge-coloring such that every two edges joined by another edge are colored differently. In a strong edge-coloring, every color class induces a matching. The minimum number of colors required in a strong edge-coloring of G is called the strong chromatic index and is denoted by $\chi_{s}^{\prime}(G)$.

Let e and e^{\prime} be two edges of G. We say that e sees e^{\prime} if e and e^{\prime} are adjacent or share a common adjacent edge. So, equivalently, a strong edge-coloring is an assignment of colors to all edges such that every two edges that can see each other receive distinct colors.

Let Δ be the maximum degree of G and for $u \in V(G)$, let $d_{G}(u)$ denote the degree of u in the graph G. For each $S \subseteq V(G)$, let $\Delta(S)=\max \left\{d_{G}(s): s \in S\right\}$. Using greedy coloring arguments, one may easily show that $\chi_{s}^{\prime}(G) \leq 2 \Delta^{2}-2 \Delta+1$ holds for every graph G. Erdős and Nešetřil [3] conjectured the following tighter upper bounds and they also gave examples of graphs that achieve these bounds.

Conjecture 1.1 (Erdős and Nešetřil [3]). For every graph G, the following inequalities hold.

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}\frac{5}{4} \Delta^{2} & \text { if } \Delta \text { is even } \\ \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right) & \text { if } \Delta \text { is odd }\end{cases}
$$

[^0]In this paper, we study strong edge-coloring of bipartite graphs. Faudree Gyárfás, Schelp, and Tuza [4] conjectured the following.

Conjecture 1.2 (Faudree et al. [4]). For every bipartite graph G, the strong chromatic index of G is at most Δ^{2}.
Steger and Yu [7] confirmed Conjecture 1.2 when the maximum degree is at most 3 . Let d_{A} and d_{B} be two positive integers. A $\left(d_{A}, d_{B}\right)$-bipartite graph is a bipartite graph with bipartition A and B such that $\Delta(A) \leq d_{A}$ and $\Delta(B) \leq d_{B}$. Brualdi and Quinn Massey [2] strengthened Conjecture 1.2 to the following.

Conjecture 1.3 (Brualdi and Quinn Massey [2]). If G is $a\left(d_{A}, d_{B}\right)$-bipartite graph, then $\chi_{S}^{\prime}(G) \leq d_{A} d_{B}$.
Note that, the bounds given in Conjectures 1.2 and 1.3, if proven, would be tight; as the complete bipartite graph $K_{m, n}$ has strong chromatic index mn.

Nakprasit [6] confirmed Conjecture 1.3 for the class of $(2, \Delta)$-bipartite graphs. Recently, Bensmail, Lagoutte, and Valicov [1] proved the following result.

Theorem 1.4 (Bensmail et al. [1]). If G is a $(3, \Delta)$-bipartite graph, then $\chi_{s}^{\prime}(G) \leq 4 \Delta$.
Note that Theorem 1.4 gives a weaker bound than what is given in Conjecture 1.3. In the last section of their paper, the authors of [1] pointed out several possible strategies to improve the bound down to 3Δ. Following their suggestions, we prove the following result.

Theorem 1.5. If G is $a(3, \Delta)$-bipartite graph, then $\chi_{s}^{\prime}(G) \leq 3 \Delta$.
Our proof scheme is very similar to a scheme used in [1,2,7], first introduced in [7]. The scheme consists of using a matrix to describe a special decomposition of the graph. One minor difference in our approach is that we do not use a matrix, but instead work directly with the decomposition. The main difference in our approach lies in two aspects: the way we choose the decomposition of G and the order in which the edges are colored. Details on each will be presented in Sections 2 and 3, respectively.

The paper is organized as follows. In Section 2, we define a decomposition of G where G is a $(3, \Delta)$-bipartite graph and we also prove some basic properties of the decomposition. The main proof is presented in Section 3. Finally in Section 4 we talk about some possible extensions of our result.

2. A decomposition of G

Suppose that G is a $(3, \Delta)$-bipartite graph with bipartition (A, B) with $\Delta(A) \leq 3$. Our goal is to show that G has a strong edge-coloring using at most 3Δ colors. Nakprasit's theorem [6] implies that the result holds if $\Delta(A) \leq 2$ or $\Delta(B) \leq 2$. So we may assume that $\Delta(A)=3$ and that $\Delta \geq 3$. We may further assume that all vertices of A are of degree exactly 3 (for otherwise, we may add a number of degree- 1 vertices to B and increase the degree of every vertex of A to 3).

Now we decompose the graph G into Δ edge-disjoint spanning subgraphs $G_{1}, G_{2}, \ldots, G_{\Delta}$ such that $E=\cup_{i=1}^{\Delta} E\left(G_{i}\right)$, and $d_{G_{i}}(b) \leq 1$ for each $b \in B$ and for each $i \in\{1,2, \ldots, \Delta\}$. We call such a decomposition a B-singular decomposition of G.

Let $G_{1}, G_{2}, \ldots, G_{\Delta}$ be a B-singular decomposition of G. For every vertex $a \in A$ and for every $i \in\{1,2, \ldots, \Delta\}$, we have that $0 \leq d_{G_{i}}(a) \leq 3$. Here we will use the notions of type-1, type-2, and type-3 vertices introduced in [1] and we also require some new notions on the edges of G.

Definition 2.1. Let a be a vertex of A.

- If there exists $1 \leq i \leq \Delta$ with $d_{G_{i}}(a)=3$, then a is called a type- 1 vertex, and the edges incident to a are called triplex-edges.
- If there exists $1 \leq i \leq \Delta$ with $d_{G_{i}}(a)=2$, then a is called a type- 2 vertex, and the two edges of G_{i} incident to a are called paired-edges, the edge incident to a that is not in G_{i} is called a lonely-edge.
- If there exist distinct i, j, and k such that $d_{G_{i}}(a)=d_{G_{j}}(a)=d_{G_{k}}(a)=1$, then a is called a type- 3 vertex, and the edges incident to a are called dispersed-edges.

For each $1 \leq i \leq \Delta$, let H_{i} be the induced subgraph of G spanned by the endpoints of all lonely-edges of G_{i}. Note that H_{i} may contain edges that are not in G_{i}. Since G is bipartite, a cycle C of H_{i} must be of even length. Suppose that $|C|=2 k$. Then k may be even or odd. Let $\mathscr{C}=\left\{C \in C_{2 k}\right.$: k is odd and C is a cycle in H_{i} for some $\left.1 \leq i \leq \Delta\right\}$. We now choose a special B-singular decomposition $\mathscr{F}=\left\{G_{1}, G_{2}, \ldots, G_{\Delta}\right\}$ of G as follows.
(1) First we maximize the number of type-1 vertices;
(2) Subject to (1), we maximize the number of type-2 vertices;
(3) Subject to (1) and (2), we minimize the number of cycles in \mathscr{C}.

https://daneshyari.com/en/article/5777010

Download Persian Version:

https://daneshyari.com/article/5777010

Daneshyari.com

[^0]: E-mail address: xiangqian.zhou@wright.edu (X. Zhou).

