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a b s t r a c t

The connective constant µ(G) of a graph G is the asymptotic growth rate of the number
σn of self-avoiding walks of length n in G from a given vertex. We prove a formula for
the connective constant for free products of quasi-transitive graphs and show that σn ∼

AGµ(G)n for some constant AG that depends on G. In the case of products of finite graphs
µ(G) can be calculated explicitly and is shown to be an algebraic number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An n-step self-avoiding walk (SAW) on a rooted graph G is a path of length n starting in the root owhere no vertex appears
more than once. The connective constant describes the asymptotic growth of the number σn of self-avoiding walks of length
n on a given graph G; it is defined as

µ(G) = lim
n→∞

σ 1/n
n , (1)

provided the limit exists. In fact, if the graph is (quasi-)transitive the existence of the limit is guaranteed by subadditivity of
σn (Hammersley [14]). In the case of a finite graph µ(G) trivially equals zero. In the following we will just write µ = µ(G).

Self-avoiding walks were originally introduced on Euclidean lattices as a model for long polymer chains. But in recent
years, the study on hyperbolic lattices (Madras and Wu [19], Swierczak and Guttmann [22]), on one-dimensional lattices
(Alm and Janson [1]), and on general graphs and Cayley graphs (Grimmett and Li [8–12]) has received increasing attention
fromphysicists andmathematicians alike. In particular, the connective constant of a d-regular vertex-transitive simple graph
is shown to be bounded below by

√
d − 1 [11]. However, exact values of the connective constant are only known for a small

class of non-trivial graphs, namely ladder graphs [1], the hexagonal lattice where the connective constant equals
√
2 +

√
2

(Duminil-Copin and Smirnov [5]), and the (3.122) lattice (Jensen and Guttmann [16]).
In the present paper we use generating functions, in particular the function M(z) :=

∑
n≥0σn · zn, to derive formulas

for the connective constants for free products of graphs. Generating functions have already played an important role in the
theory of self-avoiding walks, e.g. see [1] and Bauerschmidt, Duminil-Copin, Goodman and Slade [2]. The approach of this
note is to show that the involved generating functions satisfy a functional equation of the same type as generating functions
for ordinary random walks. As a consequence the connective constant can be expressed as the smallest positive root of an
equation, see Theorem 3.3. In the case of products of finite graphs this equation can be solved explicitly and it is shown that
µ is an algebraic number, see Corollary 3.4.
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(a) K2 ∗ K3 : µ ≈ 1.7692. 1 (b) K2 ∗ K4 : µ ≈ 2.5163. (c) K3 ∗ K4 : µ ≈ 3.6151.

Fig. 1. Examples for free products of complete graphs Kn .

It is widely believed that on Zd, d ̸= 4, there is a critical exponent γ depending on d such that σn ∼ Aµnn1−γ , where A is
a constant depending on the underlying graph. However, this behaviour is rigorously proven only on lattices in dimensions
d ≥ 5 (Hara and Slade [15]), on ladder graphs [1], and (in a weaker form) on regular tessellations of the hyperbolic lattice
[19]. In this note we prove that σn ∼ Aµ(G)nn1−γ with γ = 1 for free products of graphs, see Theorem 4.1. This result
supports the conjecture proposed in [19] that SAW on nonamenable graphs exhibits a mean-field behaviour, i.e., that γ = 1.

The study of stochastic processes on free products has a long and fruitful history. The probably earliest publications on
free products of rooted graphs are due to Teh andGan [23] and Znoı̌ko [27]. For further details on products of graphs, we refer
to Hammack, Imrich and Klavžar [13]; for the special case of free products of groups, we refer to Lyndon and Schupp [18].
In most of the works generating function techniques played an important role, e.g. Woess [26]. Similar techniques to the
ones we use for rewriting generating functions in terms of functions on the factors of the free product were introduced
independently and simultaneously in Cartwright and Soardi [4], McLaughlin [20], Voiculescu [24] and Woess [25]. Free
products owe some of their importance to Stalling’s Splitting Theorem which states that a finitely generated group has
more than one (geometric) end if and only if it admits a nontrivial decomposition as an amalgamated free product or an
HNN-extension over a finite subgroup. Furthermore, in many cases exact calculations are possible on free products whereas
so far these kind of results seem out of reach on one-ended nonamenable graphs. For example, the spectral radius of random
walks (we refer e.g. to [26]) and the critical percolation probability pc (Špakulová [17,21]) can be calculated on free products
but still constitute a big challenge on one-ended nonamenable graphs.

2. Free products of graphs

Let G = (V , E, o) be a rooted graph with vertex set V , edge set E, and distinguished vertex o. The graphs considered in
this note are locally finite, connected and simple, i.e. no multiple edges between any pair of vertices. An (undirected) edge
e ∈ E with endpoints u, v ∈ V is noted as e = ⟨u, v⟩. Two vertices u, v are called adjacent if there exists an edge e ∈ E such
that e = ⟨u, v⟩; in this case we write u ∼ v. The distinguished vertex o ∈ V is called the root (or origin) of the graph. A path
of length n ∈ N on a graph G is a sequence of vertices [v0, v1, . . . , vn] such that vi−1 ∼ vi for i ∈ {1, . . . , n}. We recall that
a graph is called quasi-transitive if its automorphism group acts quasi-transitive, i.e. with finitely many orbits. In particular,
every finite graph is quasi-transitive.

We now give a standard definition of free products of graphs (see e.g. [26]). Let r ∈ Nwith r ≥ 2 and set I := {1, . . . , r}.
Let G1 = (V1, E1, o1), . . . ,Gr = (Vr , Er , or ) be a finite family of undirected, connected, quasi-transitive, rooted graphs with
vertex sets Vi, edge sets Ei and roots oi for 1 ≤ i ≤ r . We assume also that |Vi| ≥ 2 for every i ∈ I and that the vertex sets
are distinct.

Let V×

i := Vi \ {oi} for every i ∈ I and define the function τ :
⋃

i∈IV
×

i → I by τ (x) := i if x ∈ V×

i . Define

V := V1 ∗ · · · ∗ Vr =

⎧⎨⎩x1x2 . . . xn | n ∈ N, xi ∈

⋃
j∈I

V×

j , τ (xi) ̸= τ (xi+1)

⎫⎬⎭ ∪ {o},

which is the set of ‘words’ over the alphabet
⋃

i∈IV
×

i such that no two consecutive letters come from the same V×

i . The
empty word in V is denoted by o. We extend the function τ on V by setting τ (x1 . . . xn) := τ (xn) for x1x2 . . . xn ∈ V . On the
set V we have a partial word composition law: if x = x1 . . . xm, y = y1 . . . yn ∈ V with τ (xm) ̸= τ (y1) then xy stands for the
concatenation of x and y, which is again an element of V . In particular, for x = x1 . . . xn ∈ V , if x1 ̸∈ V×

i then we set oix := x,
and if xn ̸∈ V×

i then we set xoi := x. Additionally, we set xo := ox := x. We regard each Vi as a subset of V , identifying each
oi with o.

1 The exact value of µ is 6
(
−2 +

3
√
46 − 6

√
57 +

3
√
46 + 6

√
57

)−1
.
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