Maximal m-distance sets containing the representation of the Hamming graph $H(n, m)$

Saori Adachi ${ }^{\text {a }}$, Rina Hayashi ${ }^{\text {b }}$, Hiroshi Nozaki ${ }^{\text {c,* }}$, Chika Yamamoto ${ }^{\text {d }}$
${ }^{\text {a }}$ Chiryu-higashi High School, 18-6 Oyama, Nagashino-cho, Chiryu, Aichi 472-8639, Japan
${ }^{\text {b }}$ Shinkawa Junior High School, 750 Sukaguchi, Kiyosu, Aichi, 452-0905, Japan
${ }^{\text {c }}$ Department of Mathematics Education, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
${ }^{\text {d }}$ Oharu-minami Elementary School, 320 Sunago Hachimae, Oharu-cho Ama-gun, Aichi, 490-1143, Japan

A RTICLE INFO

Article history:

Received 15 February 2016
Received in revised form 4 July 2016
Accepted 31 August 2016
Available online 15 November 2016

Keywords:

Hamming graph
Few-distance set
Euclidean representation
Erdős-Ko-Rado theorem

Abstract

A set X in the Euclidean space \mathbb{R}^{d} is an m-distance set if the set of Euclidean distances between two distinct points in X has size m. An m-distance set X in \mathbb{R}^{d} is maximal if there does not exist a vector \mathbf{x} in \mathbb{R}^{d} such that the union of X and $\{\mathbf{x}\}$ still has only m distances. Bannai et al. (2012) investigated maximal m-distance sets that contain the Euclidean representation of the Johnson graph $J(n, m)$. In this paper, we consider the same problem for the Hamming graph $H(n, m)$. The Euclidean representation of $H(n, m)$ is an m-distance set in $\mathbb{R}^{m(n-1)}$. We prove that if the representation of $H(n, m)$ is not maximal as an m-distance set for some m, then the maximum value of n is $m^{2}+m-1$. Moreover we classify the largest m-distance sets that contain the representation of $H(n, m)$ for $n \geq 2$ and $m \leq 4$. We also classify the maximal 2-distance sets that are in $\mathbb{R}^{2 n-1}$ and contain the representation of $H(n, 2)$ for $n \geq 2$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A subset X of the Euclidean space \mathbb{R}^{d} is an m-distance set if the size of the set of distances between two distinct points in X is equal to m. The size of an m-distance set is bounded above by $\binom{d+m}{m}$ [3]. One of major problems is to find the maximum possible cardinality of an m-distance set for given m and d. The largest 1-distance set in \mathbb{R}^{d} is the regular simplex for $d \geq 1$, and it has $d+1$ points. Largest 2-distance sets in \mathbb{R}^{d} are classified for $d \leq 7$ [6,11]. Lisoněk [11] constructed a largest 2-distance set in \mathbb{R}^{8}, which is the only known set attaining the bound $|X| \leq\binom{ d+m}{m}$ for $m \geq 2$. Largest m-distance sets in \mathbb{R}^{2} are classified for $m \leq 5$ [7,12,13]. Two largest 6-distance sets are known [15]. Tables 1,2 show the cardinalities $|X|$ of largest distance sets X, and the number $\#$ of the sets, up to isometry. The largest 3-distance set in \mathbb{R}^{3} is the vertex set of the icosahedron [14].

The Euclidean representation $\tilde{J}(n, m)$ of the Johnson scheme $J(n, m)$ is the subset of \mathbb{R}^{n} consisting of all vectors with 1 's in m coordinates and 0 's elsewhere. The set $\tilde{J}(n, m)$ with $n \geq 2 m$ can be interpreted as an m-distance set in \mathbb{R}^{n-1} because the sum of entries of each element is m. The largest known m-distance sets in \mathbb{R}^{n-1} are mostly $\tilde{J}(n, m)$. An m-distance set X in \mathbb{R}^{n} is maximal if there does not exist $\mathbf{x} \in \mathbb{R}^{n}$ such that $X \cup\{\mathbf{x}\}$ is still m-distance. Bannai, Sato, and Shigezumi [4] investigated maximal m-distance sets that are in \mathbb{R}^{n-1} and contain $\tilde{J}(n, m)$. They gave a necessary and sufficient condition for $\tilde{J}(n, m)$ to be a maximal m-distance set in \mathbb{R}^{n-1}, and classified the largest m-distance sets containing $\tilde{J}(n, m)$ for $n \geq 2$ and $m \leq 5$, except

[^0]Table 1

$m=2$.						
$l l l$	2	3	5	6	7	8
d	5	6	10	16	27	29
$\|X\|$	1	6	1	1	1	1

Table 2
$d=2$.

m	2	3	4	5	6
$\|X\|$	5	7	9	12	13
$\#$	1	2	4	1	≥ 2

Table 3	
$m=2$.	
n	5
d	8
$\|X\|$	40

Table 4

$m=3$.				
n	3	5	9	11
d	6	12	24	30
$\|X\|$	40	200	981	1451

Table 5
$m=4$.

n	2	3	5	6	7	9	11	13	14
d	4	8	16	20	24	32	40	48	52
$\|X\|$	25	22	1600	2004	3390	8829	16566	29056	39417

for $(n, m)=(9,4)$. The case $(n, m)=(9,4)$ is solved in [1]. This construction of distance sets might be possible for other association schemes. In this paper we consider the Hamming scheme $H(n, m)$.

Let $F_{n}=\{1, \ldots, n\}, \mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \in F_{n}^{m}$, and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right) \in F_{n}^{m}$. The Hamming distance of \mathbf{x} and \mathbf{y} is defined to be $h(\mathbf{x}, \mathbf{y})=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$. The Hamming scheme $H(n, m)$ is an association scheme $\left(F_{n}^{m},\left\{R_{0}, \ldots, R_{m}\right\}\right)$, where $R_{i}=\{(\mathbf{x}, \mathbf{y}): h(\mathbf{x}, \mathbf{y})=i\}$. Let $\varphi: F_{n}^{m} \rightarrow \mathbb{R}^{m n}$ be the embedding defined by

$$
\varphi: \mathbf{x}=\left(x_{1}, \ldots, x_{m}\right) \mapsto \tilde{\mathbf{x}}=\sum_{i=1}^{m} \mathbf{e}_{(i-1) n+x_{i}}
$$

where $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m n}\right\}$ is the standard basis of $\mathbb{R}^{m n}$. Let $\tilde{H}(n, m)$ denote the image of φ. Note that $h(\mathbf{x}, \mathbf{y})=k$ for $\mathbf{x}, \mathbf{y} \in H(n, m)$ if and only if $d(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})=\sqrt{2 k}$ for $\tilde{\mathbf{x}}, \tilde{\mathbf{y}} \in \tilde{H}(n, m)$, where $d($, $)$ is the Euclidean distance. Let \mathbf{j}_{k} denote the vector

$$
\mathbf{j}_{k}=\sum_{i=(k-1) n+1}^{k n} \mathbf{e}_{i}
$$

Every vector in $\tilde{H}(n, m)$ is perpendicular to \mathbf{j}_{k} for $k \in\{1, \ldots, m\}$. We can therefore interpret $\tilde{H}(n, m)$ as an m-distance set in $\mathbb{R}^{m(n-1)}$. We consider maximal m-distance sets that are in $\mathbb{R}^{m(n-1)}$ and contain $\tilde{H}(n, m)$.

This paper is summarized as follows. In Section 2, we give some notation, and determine the coordinates of a vector \mathbf{x} when \mathbf{x} can be added to $\tilde{H}(n, m)$ while maintaining m-distance. In Section 3, the maximal 2-distance sets containing $\tilde{H}(n, 2)$ are classified by an explicit way. In Section 4, we give a necessary and sufficient condition for $\tilde{H}(n, m)$ to be maximal as an m-distance set. Moreover, we prove that if $\tilde{H}(n, m)$ is not maximal as an m-distance set for some m, then the maximum value of n is equal to $m^{2}+m-1$. In Section 5 , we classify the largest m-distance sets that are in $\mathbb{R}^{m(n-1)}$ and contain $\tilde{H}(n, m)$ for $n \geq 2$ and $m \leq 4$. Tables 3-5 show the maximum cardinalities $|X|$ and dimension $d=m(n-1)$. In Section 6 , we classify maximal 2-distance sets that are in $\mathbb{R}^{2(n-1)+1}$ and contain $\tilde{H}(n, 2)$.

2. Vectors that can be added to $\tilde{H}(n, m)$

First we give some notation. For real numbers x_{1}, \ldots, x_{n} and natural numbers $\lambda_{1}, \ldots, \lambda_{n}$, we use the notation

$$
\left(x_{1}^{\lambda_{1}}, \ldots, x_{n}^{\lambda_{n}}\right)=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \ldots, \underbrace{x_{n}, \ldots, x_{n}}_{\lambda_{n}}) \in \mathbb{R}^{\lambda_{1}+\cdots+\lambda_{n}},
$$

Download Persian Version:

https://daneshyari.com/article/5777031

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: k630945d@m2.aichi-c.ed.jp (S. Adachi), hnozaki@auecc.aichi-edu.ac.jp (H. Nozaki).

