On acyclic edge-coloring of complete bipartite graphs

Ayineedi Venkateswarlu ${ }^{\text {a,* }}$, Santanu Sarkar ${ }^{\text {b }}$, Sai Mali Ananthanarayanan ${ }^{\text {c }}$
${ }^{\text {a }}$ Computer Science Unit, Indian Statistical Institute - Chennai Centre, MGR Knowledge City Road, Taramani, Chennai - 600113, India
${ }^{\text {b }}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036, India
c Department of Combinatorics \& Optimization, University of Waterloo, Canada

ARTICLE INFO

Article history:

Received 30 October 2015
Received in revised form 19 August 2016
Accepted 29 August 2016

Keywords:

Acyclic edge-coloring
Acyclic chromatic index
Perfect matching
Perfect 1-factorization
Complete bipartite graphs

Abstract

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2-colored) cycles. The acyclic chromatic index of a graph G, denoted by $a^{\prime}(G)$, is the least integer k such that G admits an acyclic edge-coloring using k colors. Let $\Delta=\Delta(G)$ denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by $K_{n, n}$. Basavaraju, Chandran and Kummini proved that $a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$ when n is odd. Basavaraju and Chandran provided an acyclic edge-coloring of $K_{p, p}$ using $p+2$ colors and thus establishing $a^{\prime}\left(K_{p, p}\right)=$ $p+2=\Delta+2$ when p is an odd prime. The main tool in their approach is perfect 1-factorization of $K_{p, p}$. Recently, following their approach, Venkateswarlu and Sarkar have shown that $K_{2 p-1,2 p-1}$ admits an acyclic edge-coloring using $2 p+1$ colors which implies that $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$, where p is an odd prime. In this paper, we generalize this approach and present a general framework to possibly get an acyclic edge-coloring of $K_{n, n}$ which possesses a perfect 1 -factorization using $n+2=\Delta+2$ colors. In this general framework, using number theoretic techniques, we show that $K_{p^{2}, p^{2}}$ admits an acyclic edgecoloring with $p^{2}+2$ colors and thus establishing $a^{\prime}\left(K_{p^{2}, p^{2}}\right)=p^{2}+2=\Delta+2$ when p is an odd prime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no two adjacent edges have the same color. So it is a map $\theta: E \rightarrow \mathcal{C}$ with $\theta(e) \neq \theta(f)$ for any adjacent edges $e, f \in E$, where \mathcal{C} is the set of colors. The chromatic index, denoted by $\chi^{\prime}(G)$, is the least integer k such that G admits a proper edge-coloring using k colors. A proper coloring of G is acyclic if there is no two-colored cycle in G. The acyclic edge chromatic number (also called acyclic chromatic index), denoted by $a^{\prime}(G)$, is the least integer k such that G admits an acyclic edge-coloring using k colors. The notion of acyclic coloring was first introduced by Grünbaum [14] in 1973, and the concept of acyclic edge-coloring was first studied by Fiamčik [12]. Let $\Delta=\Delta(G)$ be the maximum degree of a vertex in G. It is obvious that any proper edge-coloring requires at least Δ colors. Vizing [23] proved that there always exists a proper edge-coloring with $\Delta+1$ colors. Since any acyclic edge coloring is proper, we must have $a^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$. In 1978, Fiamčík [12] (also independently Alon, Sudakov and Zaks [3]) posed the following conjecture.

Conjecture 1.1. For any graph $G, a^{\prime}(G) \leq \Delta+2$.

[^0]In [3] it was proved that there exists a constant c such that $a^{\prime}(G) \leq \Delta+2$ for any graph with girth at least $c \Delta \log \Delta$. It was also proved in [3] that $a^{\prime}(G) \leq \Delta+2$ for almost all Δ-regular graphs. Later Něsetřil and Wormald [19] improved this bound and showed that $a^{\prime}(G) \leq \Delta+1$ for a random regular graph G. In another direction, there have been many results giving upper bounds on $a^{\prime}(G)$ for an arbitrary graph G. For example, Alon, McDiarmid and Reed [2] proved that $a^{\prime}(G) \leq 64 \Delta$. Molloy and Reed [16] improved this bound and showed that $a^{\prime}(G) \leq 16 \Delta$. Recently, Ndreca et al. [20] obtained $a^{\prime}(G) \leq\lceil 9.62 \Delta\rceil$ and then Esperet et al. [11] have shown $a^{\prime}(G) \leq 4 \Delta-4$. This has been recently improved by Giota et al. [13], who showed that $a^{\prime}(G) \leq\lceil 3.74(\Delta-1)\rceil+1$. The recent improvements rely on various algorithmic versions of Lovász Local Lemma. The acyclic edge-coloring of planar graphs has been deeply studied in recent years. See [24, Section 3.3] for a nice account of recent results.

Conjecture 1.1 was shown to be true for some special classes of graphs. Burnstein [9] showed that $a^{\prime}(G) \leq 5$ when $\Delta=3$. Hence the conjecture is true when $\Delta \leq 3$. In fact it was shown in [4] that $a^{\prime}(G) \leq 4$ when $\Delta(G) \leq 3$ and $G \notin\left\{K_{4}, K_{3,3}\right\}$. Muthu, Narayanan and Subramanian proved that the conjecture holds true for grid-like graphs [17] and outerplanar graphs [18]. It has been observed that determining $a^{\prime}(G)$ is a hard problem from both theoretical and algorithmic points of view [24, p. 2119]. In fact, we do not yet know the values of $a^{\prime}(G)$ for some simple and highly structured graphs like complete graphs and complete bipartite graphs in general. Fortunately, we can get the exact value of $a^{\prime}(G)$ for some cases of complete bipartite graphs, thanks to the perfect 1-factorization.

Let $K_{n, n}$ be the complete bipartite graph with n vertices on each side. The complete bipartite graph $K_{n, n}$ is said to have a perfect 1 -factorization if the edges of $K_{n, n}$ can be decomposed into n disjoint perfect matchings such that the union of any two perfect matchings gives a Hamiltonian cycle (see Section 2 for more details). It is known that when $n \in\left\{p, 2 p-1, p^{2}\right\}$, where p is an odd prime, or $n<50$ and odd, then $K_{n, n}$ has a perfect 1 -factorization (see [8]). One can easily see that if $K_{n, n}$ has a perfect 1-factorization then $a^{\prime}\left(K_{n-2, n-2}\right) \leq a^{\prime}\left(K_{n-1, n-1}\right) \leq n$. And also we have the following result due to Basavaraju, Chandran and Kummini [6].

Theorem 1.1. $a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$, when n is odd.
Hence $a^{\prime}\left(K_{n-2, n-2}\right)=n=\Delta+2$ when $n \in\left\{p, 2 p-1, p^{2}\right\}$. By a result of Guldan [15, Corollary 1], we can also get $a^{\prime}\left(K_{n-1, n-1}\right)=n=\Delta+1$ when $n \in\left\{p, 2 p-1, p^{2}\right\}$.

The main idea here is to give different colors to the edges in different 1-factors in $K_{n, n}$, and removal of (one) two vertices on each side and their associated edges gives the required edge-coloring of ($K_{n-1, n-1}$) $K_{n-2, n-2}$ with n colors. But a different approach is needed to deal with $K_{n, n}$ when $n \in\left\{p, 2 p-1, p^{2}\right\}$. In 2009, Basavaraju and Chandran [5] proved that $a^{\prime}\left(K_{p, p}\right)=p+2=\Delta+2$ for any odd prime p. We can view their approach as follows: suitably pick one edge from each 1 -factor and partition these edges into two groups and each group can possibly be assigned a different color to get the required result. Following this approach, Venkateswarlu and Sarkar have recently shown that $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$ for any odd prime p [22]. In this paper we view this approach in a more general setting and propose a general framework for the proof. The only remaining infinite class of complete bipartite graphs that are known to have a perfect 1 -factorization is $K_{p^{2}, p^{2}}$, where p is an odd prime. In this general framework, we provide an acyclic edge-coloring of $K_{p^{2}, p^{2}}$ using $p^{2}+2$ colors when p is an odd prime. Therefore we state our main result as follows.

Theorem 1.2. $a^{\prime}\left(K_{p^{2}, p^{2}}\right)=p^{2}+2=\Delta+2$, where p is an odd prime.
Therefore the acyclic chromatic index is equal to $\Delta+2$ for all the three known infinite classes of complete bipartite graphs having a perfect 1-factorization, and Conjecture 1.1 holds true for such graphs.

In the next section we discuss some preliminaries and in Section 3 we present a general framework to possibly get an acyclic edge-coloring of $K_{n, n}$ which possesses a perfect 1 -factorization using $n+2$ colors. Then we present a proof of Theorem 1.2 in this framework in Section 4.

2. Preliminaries

Let $n(\geq 2)$ be an integer. We treat elements of the ring \mathbb{Z}_{n} as integers in the range $\{0,1, \ldots, n-1\}$. We denote the complete bipartite graph $K_{n, n}$ as $G=\left(V \cup V^{\prime}, E\right)$ with $|V|=\left|V^{\prime}\right|=n$ and $E=\left\{\left(v \mapsto v^{\prime}\right): v \in V\right.$ and $\left.v^{\prime} \in V^{\prime}\right\}$. We use \mapsto to define edges though our graph $K_{n, n}$ is undirected. This is only for ease of presentation in associating a perfect matching in $K_{n, n}$ with a permutation of the label set $I(=\{0,1, \ldots, n-1\})$, which we discuss below. Accordingly, the use of arrows in Figs. 1 and 2 is to explicitly emphasize the correspondence between a perfect matching and its associated permutation map. We use the terms 'composition' and 'product' of permutations interchangeably. Note also that a permutation can be decomposed as a product of disjoint cycles uniquely (up to a reordering of the cycles and cyclic rotation of the elements within a cycle) and it is called a disjoint cycle decomposition. We use \sqcup (instead of the usual union notation \cup) to signify union of 'disjoint' sets.

2.1. Perfect matchings and perfect 1-factorizations

A matching in a graph is a set of edges without common vertices, and a perfect matching is a matching which matches all vertices of the graph. In the case of complete bipartite graph $K_{n, n}$, a perfect matching $M \subset E$ is a set of n edges satisfying:

https://daneshyari.com/en/article/5777035

Download Persian Version:

https://daneshyari.com/article/5777035

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: venku@isichennai.res.in (A. Venkateswarlu), santanu@iitm.ac.in (S. Sarkar), smananth@uwaterloo.ca (S.M. Ananthanarayanan).

