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a b s t r a c t

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic
(2-colored) cycles. The acyclic chromatic index of a graph G, denoted by a′(G), is the
least integer k such that G admits an acyclic edge-coloring using k colors. Let ∆ = ∆(G)
denote the maximum degree of a vertex in a graph G. A complete bipartite graph with
n vertices on each side is denoted by Kn,n. Basavaraju, Chandran and Kummini proved
that a′(Kn,n) ≥ n + 2 = ∆ + 2 when n is odd. Basavaraju and Chandran provided
an acyclic edge-coloring of Kp,p using p + 2 colors and thus establishing a′(Kp,p) =

p + 2 = ∆ + 2 when p is an odd prime. The main tool in their approach is perfect
1-factorization of Kp,p. Recently, following their approach, Venkateswarlu and Sarkar have
shown that K2p−1,2p−1 admits an acyclic edge-coloring using 2p + 1 colors which implies
that a′(K2p−1,2p−1) = 2p+1 = ∆+2, where p is an odd prime. In this paper, we generalize
this approach and present a general framework to possibly get an acyclic edge-coloring of
Kn,n which possesses a perfect 1-factorization using n + 2 = ∆ + 2 colors. In this general
framework, using number theoretic techniques,we show thatKp2,p2 admits an acyclic edge-
coloring with p2 + 2 colors and thus establishing a′(Kp2,p2 ) = p2 + 2 = ∆ + 2 when p is an
odd prime.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no
two adjacent edges have the same color. So it is a map θ : E → C with θ (e) ̸= θ (f ) for any adjacent edges e, f ∈ E, where C is
the set of colors. The chromatic index, denoted by χ ′(G), is the least integer k such that G admits a proper edge-coloring using
k colors. A proper coloring of G is acyclic if there is no two-colored cycle in G. The acyclic edge chromatic number (also called
acyclic chromatic index), denoted by a′(G), is the least integer k such that G admits an acyclic edge-coloring using k colors. The
notion of acyclic coloring was first introduced by Grünbaum [14] in 1973, and the concept of acyclic edge-coloring was first
studied by Fiamc̆ík [12]. Let ∆ = ∆(G) be the maximum degree of a vertex in G. It is obvious that any proper edge-coloring
requires at least ∆ colors. Vizing [23] proved that there always exists a proper edge-coloring with ∆ + 1 colors. Since any
acyclic edge coloring is proper, we must have a′(G) ≥ χ ′(G) ≥ ∆. In 1978, Fiamc̆ík [12] (also independently Alon, Sudakov
and Zaks [3]) posed the following conjecture.

Conjecture 1.1. For any graph G, a′(G) ≤ ∆ + 2.
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In [3] it was proved that there exists a constant c such that a′(G) ≤ ∆+2 for any graphwith girth at least c∆ log∆. It was
also proved in [3] that a′(G) ≤ ∆ + 2 for almost all ∆-regular graphs. Later Něsetřil andWormald [19] improved this bound
and showed that a′(G) ≤ ∆ + 1 for a random regular graph G. In another direction, there have been many results giving
upper bounds on a′(G) for an arbitrary graph G. For example, Alon, McDiarmid and Reed [2] proved that a′(G) ≤ 64∆. Molloy
and Reed [16] improved this bound and showed that a′(G) ≤ 16∆. Recently, Ndreca et al. [20] obtained a′(G) ≤ ⌈9.62∆⌉

and then Esperet et al. [11] have shown a′(G) ≤ 4∆ − 4. This has been recently improved by Giota et al. [13], who showed
that a′(G) ≤ ⌈3.74(∆ − 1)⌉ + 1. The recent improvements rely on various algorithmic versions of Lovász Local Lemma. The
acyclic edge-coloring of planar graphs has been deeply studied in recent years. See [24, Section 3.3] for a nice account of
recent results.

Conjecture 1.1 was shown to be true for some special classes of graphs. Burnstein [9] showed that a′(G) ≤ 5when∆ = 3.
Hence the conjecture is true when ∆ ≤ 3. In fact it was shown in [4] that a′(G) ≤ 4 when ∆(G) ≤ 3 and G ̸∈ {K4, K3,3}.
Muthu, Narayanan and Subramanian proved that the conjecture holds true for grid-like graphs [17] and outerplanar graphs
[18]. It has been observed that determining a′(G) is a hard problem from both theoretical and algorithmic points of view
[24, p. 2119]. In fact, we do not yet know the values of a′(G) for some simple and highly structured graphs like complete
graphs and complete bipartite graphs in general. Fortunately, we can get the exact value of a′(G) for some cases of complete
bipartite graphs, thanks to the perfect 1-factorization.

Let Kn,n be the complete bipartite graph with n vertices on each side. The complete bipartite graph Kn,n is said to have a
perfect 1-factorization if the edges of Kn,n can be decomposed into n disjoint perfect matchings such that the union of any
two perfect matchings gives a Hamiltonian cycle (see Section 2 for more details). It is known that when n ∈ {p, 2p − 1, p2},
where p is an odd prime, or n < 50 and odd, then Kn,n has a perfect 1-factorization (see [8]). One can easily see that if Kn,n
has a perfect 1-factorization then a′(Kn−2,n−2) ≤ a′(Kn−1,n−1) ≤ n. And also we have the following result due to Basavaraju,
Chandran and Kummini [6].

Theorem 1.1. a′(Kn,n) ≥ n + 2 = ∆ + 2, when n is odd.

Hence a′(Kn−2,n−2) = n = ∆ + 2 when n ∈ {p, 2p − 1, p2}. By a result of Guldan [15, Corollary 1], we can also get
a′(Kn−1,n−1) = n = ∆ + 1 when n ∈ {p, 2p − 1, p2}.

The main idea here is to give different colors to the edges in different 1-factors in Kn,n, and removal of (one) two
vertices on each side and their associated edges gives the required edge-coloring of (Kn−1,n−1) Kn−2,n−2 with n colors. But
a different approach is needed to deal with Kn,n when n ∈ {p, 2p − 1, p2}. In 2009, Basavaraju and Chandran [5] proved
that a′(Kp,p) = p + 2 = ∆ + 2 for any odd prime p. We can view their approach as follows: suitably pick one edge from
each 1-factor and partition these edges into two groups and each group can possibly be assigned a different color to get the
required result. Following this approach, Venkateswarlu and Sarkar have recently shown that a′(K2p−1,2p−1) = 2p+1 = ∆+2
for any odd prime p [22]. In this paper we view this approach in a more general setting and propose a general framework for
the proof. The only remaining infinite class of complete bipartite graphs that are known to have a perfect 1-factorization is
Kp2,p2 , where p is an odd prime. In this general framework, we provide an acyclic edge-coloring of Kp2,p2 using p2 + 2 colors
when p is an odd prime. Therefore we state our main result as follows.

Theorem 1.2. a′(Kp2,p2 ) = p2 + 2 = ∆ + 2, where p is an odd prime.

Therefore the acyclic chromatic index is equal to∆+2 for all the three known infinite classes of complete bipartite graphs
having a perfect 1-factorization, and Conjecture 1.1 holds true for such graphs.

In the next section we discuss some preliminaries and in Section 3 we present a general framework to possibly get
an acyclic edge-coloring of Kn,n which possesses a perfect 1-factorization using n + 2 colors. Then we present a proof of
Theorem 1.2 in this framework in Section 4.

2. Preliminaries

Let n (≥2) be an integer.We treat elements of the ringZn as integers in the range {0, 1, . . . , n−1}.Wedenote the complete
bipartite graph Kn,n as G = (V ∪ V ′, E) with |V | = |V ′

| = n and E = {(v ↦→ v′) : v ∈ V and v′
∈ V ′

}. We use ↦→ to define
edges though our graph Kn,n is undirected. This is only for ease of presentation in associating a perfect matching in Kn,n with
a permutation of the label set I(={0, 1, . . . , n − 1}), which we discuss below. Accordingly, the use of arrows in Figs. 1 and 2
is to explicitly emphasize the correspondence between a perfect matching and its associated permutation map. We use the
terms ‘composition’ and ‘product’ of permutations interchangeably. Note also that a permutation can be decomposed as a
product of disjoint cycles uniquely (up to a reordering of the cycles and cyclic rotation of the elements within a cycle) and it
is called a disjoint cycle decomposition. We use ⊔ (instead of the usual union notation ∪) to signify union of ‘disjoint’ sets.

2.1. Perfect matchings and perfect 1-factorizations

Amatching in a graph is a set of edges without common vertices, and a perfect matching is a matching which matches all
vertices of the graph. In the case of complete bipartite graph Kn,n, a perfect matching M ⊂ E is a set of n edges satisfying:
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