

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 45-51

www.elsevier.com/locate/endm

Packing degenerate graphs greedily

Peter Allen, Julia Böttcher²

Department of Mathematics London School of Economics London, United Kingdom

Jan Hladký 1,3

Institut für Geometrie TU Dresden Dresden, Germany

Diana Piguet^{1,4}

Institute of Computer Science Czech Academy of Sciences Prague, Czechia

Abstract

We prove that if \mathcal{G} is a family of graphs with at most n vertices each, with constant degeneracy, with maximum degree at most $O(n/\log n)$, and with total number of edges at most $(1 - o(1))\binom{n}{2}$, then \mathcal{G} packs into the complete graph K_n .

Keywords: tree packing conjecture, graph packing, graph processes

1 Introduction

A packing of a family $\mathcal{G} = \{G_1, \ldots, G_k\}$ of graphs into a host graph H is a colouring of the edges of H with the colours $0, 1, \ldots, k$ such that the edges of colour i form an isomorphic copy of G_i for each $1 \leq i \leq k$. Graph packing problems can be considered as a common generalisation of a number of important directions in Extremal Graph Theory. Here we focus on packings of large connected graphs that either exhaust all (*perfect packings*) or almost all the edges of the host graph H (*near-perfect packings*). The first and still the most famous problems are the Tree Packing Conjectures. In 1963 Ringel conjectured that if T is any n + 1-vertex tree, then 2n + 1 copies of T pack into K_n , and in 1976 Gyárfás conjectured that if T_i is an *i*-vertex tree for each $1 \leq i \leq n$ then $\{T_1, \ldots, T_n\}$ packs into K_n . Since we have $(2n + 1)e(T) = {n \choose 2}$ and $\sum e(T_i) = {n \choose 2}$, both conjectures ask for perfect packings. Despite many partial results both these problems were wide open until recently.

The first near-perfect packing result in this direction was obtained in [1], where it was shown that one can pack into K_n any family of trees whose maximum degree is at most Δ , whose order is at most $(1 - \delta)n$, and whose total number of edges is at most $(1-\delta)\binom{n}{2}$, provided that n is sufficiently large given the constants $\Delta \in \mathbb{N}$ and $\delta > 0$. This approximately answers the Tree Packing Conjectures for bounded degree trees. Various generalisations were obtained in quick succession. The paper [6] shows that one can replace trees with graphs from any nontrivial minor-closed family. This was improved in [2] by allowing the graphs to be packed to be spanning. The paper [5] proves a near-perfect packing result for families of graphs with bounded maximum degree which are otherwise unrestricted. Both Tree Packing Conjectures for trees of bounded maximum degree were solved in [4]. The paper [3] gives near-perfect packing results for spanning trees, and for almost spanning trees, allowing the maximum degrees to be as big $O(n^{1/6}/\log^6 n)$, and $O(n/\log n)$, respectively. Our result is a near-perfect packing theorem for spanning graphs with bounded degeneracy and maximum degrees up to $O(n/\log n)$, extending the mentioned packing results.⁵

¹ Hladký and Piguet were supported by the GAČR, grant GJ16-07822Y. The Institute of Computer Science of the Czech Academy of Sciences is supported by RVO:67985807.

² Email: p.d.allen@lse.ac.uk, j.boettcher@lse.ac.uk

³ Email: honzahladky@gmail.com

⁴ Email: piguet@cs.cas.cz

⁵ However, the main focus of [3] is on packing into random graphs, and [5] provides a packing result in the setting of the Regularity lemma.

Download English Version:

https://daneshyari.com/en/article/5777053

Download Persian Version:

https://daneshyari.com/article/5777053

Daneshyari.com