Complementary cycles in regular bipartite tournaments: a proof of Manoussakis, Song and Zhang Conjecture

Stéphane Bessy ${ }^{1}$
Université de Montpellier - CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France
Jocelyn Thiebaut ${ }^{2}$
Université de Montpellier - CNRS, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

Let D be a k-regular bipartite tournament. We show that, for every even p with $4 \leq p \leq|V(D)|-4, D$ has a cycle C of size p such that $D \backslash C$ is Hamiltonian unless D is isomorphic to a special digraph, $F_{4 k}$. This result proves a conjecture of Manoussakis, Song and Zhang.

Keywords: Cycle factor, Hamiltonian cycle, Regular bipartite tournament

1 Introduction

A cycle factor of a digraph D is a spanning subdigraph of D whose components are vertex-disjoint (directed) cycles. For some strictly positive integer k, a k -

[^0]cycle factor of D is a cycle factor of D with k vertex-disjoint cycles; it can also be considered as a partition of D into k Hamiltonian digraphs. In particular, a 1-cycle factor is an Hamiltonian cycle of D. Finally, a $\left(n_{1}, \ldots, n_{k}\right)$-cycle factor is a k-cycle factor whose cycles are of size n_{1}, \ldots, n_{k}, where $n_{1}+\ldots+n_{k}=$ $|V(D)|$. When $k=2$, two spanning disjoint cycles of a 2 -cycle factor are called complementary cycles. Finding cycles of many lengths in different digraphs is a natural problem in Graph Theory [2]. For example, Moon proved in [8] that every vertex of a strong tournament is in a cycle of every length. More specifically about k-cycle factors in tournaments, Chen and al. proved in [4] that every k-connected tournament with at least $8 k$ vertices contains a k-cycle factor. We can also mention the following result, due to Reid in [9] and Song in [10], which is that every 2-connected tournament with at least 6 vertices and not isomorphic to T_{7}, the Paley tournament, with 7 vertices with no transitive subtournament with 4 vertices, has a 2 -cycle factor of lengths p and $|V(T)|-p$ for all p such that $3 \leq p \leq|V(T)|-3$. Li and Shu finally refined the previous result by proving in [6] that any strong tournament with at least 6 vertices, a minimum out-degree or a minimum in-degree at least 3 , and not isomorphic to T_{7} has 2-cycle factor of length p and $|V(T)|-p$ for all p such that $3 \leq p \leq|V(T)|-3$.

In this paper, we focus on cycle factors in k-regular bipartite tournaments, that is in orientations of complete bipartite graphs such that every vertex has an in-degree and an out-degree equal to k. Thus, notice that these digraphs have $4 k$ vertices. The existing results concerning this class of digraphs try to extend what we know about cycle factors in tournaments. For example, Zhang and Song proved in [11] that any k-regular bipartite tournament with $k \geq 2$ has a 2-cycle factor. Moreover, Manoussakis, Song and Zhang conjectured in [12] the main Theorem of this article:

Theorem 1.1 Let D be a k-regular bipartite tournament not isomorphic to $F_{4 k}$. Then for every even p with $4 \leq p \leq|V(D)|-4, D$ has a 2-cycle factor of lengths p and $|V(D)|-p$.

The digraph $F_{4 k}$ corresponds to the k-regular bipartite tournament consisting of four independent sets K, L, M and N each of cardinality k with all possible arcs from K to L, from L to M, from M to N and from N to K. In fact, every cycle of $F_{4 k}$ has length $0(\bmod 4)$. For instance $F_{4 k}$ has no 2cycle factor of length 6 and $\left|V\left(F_{4 k}\right)\right|-6$. Zhang et al. proved their conjecture when $p=4$ in their original paper [12]. In $2014 \mathrm{Bai}, \mathrm{Li}$ and He proved the conjecture for $p=6$ in [1]. Notice that finding a 2 -cycle factor with a cycle of prescribed length in a digraph guarantees us we can partition our digraph

Download Persian Version:
https://daneshyari.com/article/5777062

Daneshyari.com

[^0]: ${ }^{1}$ Email:bessy@lirmm.fr
 2 Email:thiebaut@lirmm.fr

