

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 123–129 www.elsevier.com/locate/endm

Staircases, dominoes, and the growth rate of 1324-avoiders

David Bevan ^{a,1} Robert Brignall ^{b,2} Andrew Elvey Price ^{c,2} Jay Pantone ^{d,2}

- ^a Department of Computer and Information Sciences, University of Strathclyde, $Glasgow,\ UK$
- ^b School of Mathematics and Statistics, The Open University, Milton Keynes, UK
 - ^c School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
 - ^d Department of Mathematics, Dartmouth College, Hanover, NH, USA

Abstract

We establish a lower bound of 10.271 for the growth rate of the permutations avoiding 1324, and an upper bound of 13.5. This is done by first finding the precise growth rate of a subclass whose enumeration is related to West-2-stack-sortable permutations, and then combining copies of this subclass in particular ways.

Keywords: Permutation, patterns, enumeration, growth rate.

1 Introduction

The class of 1324-avoiding permutations is famously hard to count. Whereas every other permutation class that avoids a single length 4 permutation was

¹ Email: david.bevan@strath.ac.uk

² Email: {rbrignall,andrewelveyprice,jay.pantone}@gmail.com

enumerated in the 1990s (see Bóna [5] and Gessel [14]), not even the first-order asymptotics (the "growth rate") of Av(1324) is yet known.

Let π and σ be permutations of lengths n and m respectively, written in one-line notation. We say that σ is *contained* in π if there exists a subsequence $i_1 < i_2 < \cdots < i_m$ of $1, \ldots, n$ such that $\sigma(j) < \sigma(k)$ if and only if $\pi(i_j) < \pi(i_k)$, for all $1 \le j, k \le m$. If σ is not contained in π , then it avoids π . We write $\operatorname{Av}(\pi)$ to mean the set consisting of all permutations that avoid π , and note that it forms a hereditary class, or permutation class, in the sense that whenever $\sigma \in \operatorname{Av}(\pi)$ and τ is contained in σ , then $\tau \in \operatorname{Av}(\pi)$.

Given any permutation π , let $S_n(\pi)$ denote the number of permutations of length n that avoid π . The growth rate of the class $Av(\pi)$ is

$$\operatorname{gr}(\operatorname{Av}(\pi)) = \lim_{n \to \infty} \sqrt[n]{S_n(\pi)},$$

and is known to exist by a result of Arratia [3], combined with the celebrated resolution of the Stanley-Wilf conjecture by Marcus and Tardos [15]. More generally, for an infinite sequence s_1, s_2, \ldots of positive integers, the *growth* rate of (s_n) is $\lim_{n\to\infty} \sqrt[n]{s_n}$, if this exists.

In the same paper, Arratia [3] conjectured that $\operatorname{gr}(\operatorname{Av}(\pi)) \leq (|\pi|-1)^2$, where $|\pi|$ denotes the length of π . However this conjecture was refuted in 2006 by Albert, Elder, Rechnitzer, Westcott and Zabrocki [1], by proving that $\operatorname{gr}(\operatorname{Av}(1324)) \geq 9.47$, thereby cementing $\operatorname{Av}(1324)$ as the *bête noire* of permutation classes. Indeed, during a conference in 2004 when the result of [1] was announced, Doron Zeilberger famously declared that "not even God knows $S_{1000}(1324)$ ". Humans, with the help of computers, now know $S_{36}(1324)$, and Conway and Guttman's analysis [13] of their computation provides an estimate for $\operatorname{gr}(\operatorname{Av}(1324))$ of 11.60 ± 0.01 , and they conjecture that $S_n(1324) \sim B \cdot \mu^n \cdot \mu_1^{n^\sigma} \cdot n^g$ where $\sigma = \frac{1}{2}$, which would imply that this sequence does not have an algebraic singularity.

The history of rigorous lower and upper bounds for $\operatorname{gr}(\operatorname{Av}(1324))$ now spans several papers, and is summarised in Table 1. In addition to these, Claesson, Jelínek and Steingrímsson [12] make a conjecture regarding the number of permutations with a fixed number of inversions of each length, which if resolved would give an improved upper bound of $e^{\pi\sqrt{2/3}} \approx 13.001954$.

Our contribution to the growth rate study of Av(1324) is to provide new

³ The existence of growth rates for general permutation classes (i.e. those avoiding one or more permutations) remains open: Marcus and Tardos [15] only guarantees that lim sup exists.

Download English Version:

https://daneshyari.com/en/article/5777063

Download Persian Version:

https://daneshyari.com/article/5777063

<u>Daneshyari.com</u>