Decomposition of 8-regular graphs into paths of length 4

Fábio Botler ${ }^{1,2}$
Departamento de Ingeniería Industrial Universidad de Chile
Santiago, Chile
Alexandre Talon ${ }^{3}$
LIP
École Normale Supérieure de Lyon
Lyon, France

Abstract

A P_{ℓ}-decomposition of a graph G is a set of edge-disjoint copies of P_{ℓ} in G that cover the edge set of G, where P_{ℓ} is the path with ℓ edges. Kouider and Lonc [M. Kouider, Z. Lonc, Path decompositions and perfect path double covers, Australas. J. Combin. 19 (1999) 261-274] conjectured that any 2ℓ-regular graph G admits a P_{ℓ}-decomposition \mathcal{D} where every vertex of G is the end-vertex of exactly two paths of \mathcal{D}. In this paper we verify Kouider and Lonc's Conjecture for paths of length 4.

Keywords: Graph decomposition, regular graph, path

[^0]
1 Introduction

A decomposition of a graph G is a set \mathcal{D} of subgraphs of G that partitions the edge set of G. Given a graph H, we say that \mathcal{D} is an H-decomposition of G if every element of \mathcal{D} is isomorphic to H. Ringel (1963) conjectured that the complete graph $K_{2 \ell+1}$ admits a T-decomposition for any tree T with ℓ edges. Ringel's Conjecture holds for many classes of trees such as stars, paths, and bistars (see [2,6]). Häggkvist [3] generalized Ringel's Conjecture as follows.
Conjecture 1.1 (Graham-Häggkvist, 1989) Let T be a tree with ℓ edges. If G is a 2ℓ-regular graph, then G admits a T-decomposition

Häggkvist [3] also proved Conjecture 1.1 when G has girth at least the diameter of T. For the case where $T=P_{\ell}$ is the path with ℓ edges (note that this notation is not standard), Kouider and Lonc [4] improved Häggkvist's result proving that if G is a 2ℓ-regular graph with girth $g \geq(\ell+3) / 2$, then G admits a balanced P_{ℓ}-decomposition \mathcal{D}, that is a path decomposition \mathcal{D} where each vertex is the end-vertex of exactly two paths of \mathcal{D}. These authors also stated the following strengthening of Conjecture 1.1 for paths.
Conjecture 1.2 (Kouider-Lonc, 1999) Let ℓ be a positive integer. If G is $a 2 \ell$-regular graph, then G admits a balanced P_{ℓ}-decomposition.

One of the authors [1] proved the following weakening of Conjecture 1.2: for every positive integer ℓ, there exists an integer $m_{0}=m_{0}(\ell)$ such that, if G is a $2 m \ell$-regular graph with $m \geq m_{0}$, then G admits a P_{ℓ}-decomposition \mathcal{D} such that every vertex of G is the end-vertex of exactly $2 m$ paths of \mathcal{D}. In this paper we prove Conjecture 1.2 in the case $\ell=4$.
Notation. A trail T is a graph for which there is a sequence $B=x_{0} \cdots x_{\ell}$ of its vertices such that $E(T)=\left\{x_{i} x_{i+1}: 0 \leq i \leq \ell-1\right\}$ and $x_{i} x_{i+1} \neq x_{j} x_{j+1}$, for every $i \neq j$. Such a sequence B of vertices is called a tracking of T. Given a tracking $B=x_{0} \cdots x_{\ell}$ we denote by B^{-}the tracking $x_{\ell} \cdots x_{0}$. We denote by $V(B)$ and $E(B)$ the sets $\left\{x_{0}, \ldots, x_{\ell}\right\}$ of vertices, and $\left\{x_{i} x_{i+1}: 0 \leq i \leq \ell-1\right\}$ of edges of B, respectively. Moreover, we denote by \bar{B} the trail $(V(B), E(B))$, and by length of B we mean the length of \bar{B}. We also use ℓ-tracking to denote a tracking of length ℓ. A set of edge-disjoint trackings \mathcal{B} of a graph G is a tracking decomposition of G if $\cup_{B \in \mathcal{B}} E(B)=E(G)$, and if every tracking of \mathcal{B} induces a path, we say that \mathcal{B} is a path tracking decomposition.

Suppose that every tracking in \mathcal{B} has length at least 2 and consider an orientation O of a set of edges of G as follows. For each tracking $B=x_{0} \cdots x_{\ell}$ in \mathcal{B}, orient $x_{0} x_{1}$ from x_{1} to x_{0}, and $x_{\ell-1} x_{\ell}$ from $x_{\ell-1}$ to x_{ℓ}. Given a vertex v of G, we denote by $\mathcal{B}(v)$ (resp. $\operatorname{Hang}(v, \mathcal{B})$) the number of edges of G directed towards (resp. leaving) v in O (i.e., $\mathcal{B}(v)=d_{O}^{-}(v)$ and $\left.\operatorname{Hang}(v, \mathcal{B})=d_{O}^{+}(v)\right)$. We say that an edge that leaves v in O is a hanging edge at v, and that a

https://daneshyari.com/en/article/5777066

Download Persian Version:

https://daneshyari.com/article/5777066

Daneshyari.com

[^0]: ${ }^{1}$ F. Botler is partially supported by Millenium Nucleus Information and Coordination in Networks (ICM/FIC RC 130003), and FONDECYT (project $N^{o} 3170878$).
 ${ }^{2}$ Email: fbotler@ime.usp.br
 ${ }^{3}$ Email: alexandre.talon@ens-lyon.fr

