

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 147–153 www.elsevier.com/locate/endm

Decomposition of 8-regular graphs into paths of length 4

Fábio Botler 1,2

Departamento de Ingeniería Industrial Universidad de Chile Santiago, Chile

Alexandre Talon 3

LIP École Normale Supérieure de Lyon Lyon, France

Abstract

A P_{ℓ} -decomposition of a graph G is a set of edge-disjoint copies of P_{ℓ} in G that cover the edge set of G, where P_{ℓ} is the path with ℓ edges. Kouider and Lonc [M. Kouider, Z. Lonc, Path decompositions and perfect path double covers, Australas. J. Combin. 19 (1999) 261–274] conjectured that any 2ℓ -regular graph Gadmits a P_{ℓ} -decomposition \mathcal{D} where every vertex of G is the end-vertex of exactly two paths of \mathcal{D} . In this paper we verify Kouider and Lonc's Conjecture for paths of length 4.

Keywords: Graph decomposition, regular graph, path

http://dx.doi.org/10.1016/j.endm.2017.06.032 1571-0653/© 2017 Elsevier B.V. All rights reserved.

 $^{^1\,}$ F. Botler is partially supported by Millenium Nucleus Information and Coordination in Networks (ICM/FIC RC 130003), and FONDECYT (project N°3170878).

² Email: fbotler@ime.usp.br

³ Email: alexandre.talon@ens-lyon.fr

1 Introduction

A decomposition of a graph G is a set \mathcal{D} of subgraphs of G that partitions the edge set of G. Given a graph H, we say that \mathcal{D} is an H-decomposition of G if every element of \mathcal{D} is isomorphic to H. Ringel (1963) conjectured that the complete graph $K_{2\ell+1}$ admits a T-decomposition for any tree T with ℓ edges. Ringel's Conjecture holds for many classes of trees such as stars, paths, and bistars (see [2,6]). Häggkvist [3] generalized Ringel's Conjecture as follows.

Conjecture 1.1 (Graham–Häggkvist, 1989) Let T be a tree with ℓ edges. If G is a 2ℓ -regular graph, then G admits a T-decomposition

Häggkvist [3] also proved Conjecture 1.1 when G has girth at least the diameter of T. For the case where $T = P_{\ell}$ is the path with ℓ edges (note that this notation is not standard), Kouider and Lonc [4] improved Häggkvist's result proving that if G is a 2ℓ -regular graph with girth $g \ge (\ell + 3)/2$, then G admits a balanced P_{ℓ} -decomposition \mathcal{D} , that is a path decomposition \mathcal{D} where each vertex is the end-vertex of exactly two paths of \mathcal{D} . These authors also stated the following strengthening of Conjecture 1.1 for paths.

Conjecture 1.2 (Kouider–Lonc, 1999) Let ℓ be a positive integer. If G is a 2ℓ -regular graph, then G admits a balanced P_{ℓ} -decomposition.

One of the authors [1] proved the following weakening of Conjecture 1.2: for every positive integer ℓ , there exists an integer $m_0 = m_0(\ell)$ such that, if Gis a $2m\ell$ -regular graph with $m \geq m_0$, then G admits a P_ℓ -decomposition \mathcal{D} such that every vertex of G is the end-vertex of exactly 2m paths of \mathcal{D} . In this paper we prove Conjecture 1.2 in the case $\ell = 4$.

Notation. A trail T is a graph for which there is a sequence $B = x_0 \cdots x_\ell$ of its vertices such that $E(T) = \{x_i x_{i+1} : 0 \le i \le \ell - 1\}$ and $x_i x_{i+1} \ne x_j x_{j+1}$, for every $i \ne j$. Such a sequence B of vertices is called a tracking of T. Given a tracking $B = x_0 \cdots x_\ell$ we denote by B^- the tracking $x_\ell \cdots x_0$. We denote by V(B) and E(B) the sets $\{x_0, \ldots, x_\ell\}$ of vertices, and $\{x_i x_{i+1} : 0 \le i \le \ell - 1\}$ of edges of B, respectively. Moreover, we denote by \overline{B} the trail (V(B), E(B)), and by length of B we mean the length of \overline{B} . We also use ℓ -tracking to denote a tracking of length ℓ . A set of edge-disjoint trackings \mathcal{B} of a graph G is a tracking decomposition of G if $\bigcup_{B\in\mathcal{B}} E(B) = E(G)$, and if every tracking of \mathcal{B} induces a path, we say that \mathcal{B} is a path tracking decomposition.

Suppose that every tracking in \mathcal{B} has length at least 2 and consider an orientation O of a set of edges of G as follows. For each tracking $B = x_0 \cdots x_\ell$ in \mathcal{B} , orient $x_0 x_1$ from x_1 to x_0 , and $x_{\ell-1} x_\ell$ from $x_{\ell-1}$ to x_ℓ . Given a vertex v of G, we denote by $\mathcal{B}(v)$ (resp. Hang (v, \mathcal{B})) the number of edges of G directed towards (resp. leaving) v in O (i.e., $\mathcal{B}(v) = d_O^-(v)$ and $\operatorname{Hang}(v, \mathcal{B}) = d_O^+(v)$). We say that an edge that leaves v in O is a hanging edge at v, and that a

Download English Version:

https://daneshyari.com/en/article/5777066

Download Persian Version:

https://daneshyari.com/article/5777066

Daneshyari.com