

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 375–381 www.elsevier.com/locate/endm

Exponentially many nowhere-zero \mathbb{Z}_{3} -, \mathbb{Z}_{4} -, and \mathbb{Z}_{6} -flows

Zdeněk Dvořák ^{1,4,a} Bojan Mohar ^{2,5,b} Robert Šámal ^{3,6,a}

^a CSI, Faculty of Mathematics and Physics Charles University Prague, Czech Republic ^b Department of Mathematics Simon Fraser University Burnaby, Canada

Abstract

We prove that, in several settings, a graph has exponentially many nowhere-zero flows. Our results may be seen as a counting alternative to the well-known proofs of existence of \mathbb{Z}_{3^-} , \mathbb{Z}_{4^-} , and \mathbb{Z}_{6^-} flows. In the dual setting, proving exponential number of 3-colorings of planar triangle-free graphs is a related open question due to Thomassen.

Keywords: graphs, nowhere-zero flows, counting

¹ Email: rakdver@iuuk.mff.cuni.cz

² Email: mohar@sfu.ca

³ Email: samal@iuuk.mff.cuni.cz

⁴ Supported by project 14-19503S (Graph coloring and structure) of Czech Science Foundation.

⁵ Supported in part by an NSERC Discovery Grant (Canada), by the Canada Research Chairs program, and by a Research Grant of ARRS (Slovenia).

⁶ Partially supported by grant 16-19910S of the Czech Science Foundation. Partially supported by grant LL1201 ERC CZ of the Czech Ministry of Education, Youth and Sports.

1 Introduction

Our graphs may have loops and parallel edges. Let G be a graph with a given orientation of its edges and let Γ be an abelian group. A mapping $\varphi: E(G) \to \Gamma$ is called a *flow* if for every vertex $v \in V(G)$ it satisfies the Kirchhoff's law

$$\sum_{e \in \delta^+(v} \varphi(e) = \sum_{e \in \delta^-(v} \varphi(e)$$

(here $\delta^+(v)$, $\delta^-(v)$ denote the set of edges directed away from/toward v). We say that φ is a Γ -flow to express the group we are using. Further, we say that φ is nowhere-zero if $\varphi(e) \neq 0$ for every $e \in E(G)$ and we say that φ is a k-flow if $\Gamma = \mathbb{Z}$ and $|\varphi(e)| < k$ for every edge e. Note that, while we need some orientation to define a flow, the orientation itself is irrelevant: if we reverse an arc and change the sign of its flow-value, the Kirchhoff's law still holds true.

The study of nowhere-zero flows was initiated by Tutte. The main motivation was the following duality theorem:

Theorem 1.1 Let G be a plane graph and let G^* be the dual of G. Then G has a nowhere-zero \mathbb{Z}_k -flow if and only if G^* is k-colorable. If f_k is the number of nowhere-zero \mathbb{Z}_k -flows on G and c_k the number of k-colorings of G^* , then $c_k = k \cdot f_k$.

As a consequence, the questions about chromatic number of planar graphs, that were always at the core of graph theory, can be studied in a new setting. This line of thought had lead to the following conjectures, motivated by the Grötzsch's theorem and by the Four Color Theorem (still a conjecture then).

Conjecture 1.2 (Tutte)

- Every 4-edge-connected graph has a \mathbb{Z}_3 -flow.
- Every 2-edge-connected graph with no Petersen minor has a \mathbb{Z}_4 -flow.
- Every 2-edge-connected graph has a \mathbb{Z}_5 -flow.

Tutte proved that, surprisingly, the concept of Γ -flows does not depend on the structure of Γ , but only on its size. Tutte also proved that the number of nowhere-zero Γ -flows on G is equal to $p_G(|\Gamma|)$ for some polynomial p_G depending on G. Thus, if the graph is fixed and we enlarge the group, the number of nowhere-zero flows grows polynomially. In this paper, we will show that when we do the opposite—keep the same group and enlarge the graph—then in many cases the number of nowhere-zero flows grows exponentially.

Tutte's 3-flow, 4-flow, and 5-flow conjectures (Conjecture 1.2) are still

Download English Version:

https://daneshyari.com/en/article/5777096

Download Persian Version:

https://daneshyari.com/article/5777096

<u>Daneshyari.com</u>