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Abstract

We characterise gaps in the full homomorphism order of finite graphs.
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1 Introduction

For given graphs G = (VG, EG) and H = (VH , EH) a homomorphism f : G→
H is a mapping f : VG → VH such that {u, v} ∈ EG implies {f(u), f(v)} ∈ EH .
(Thus it is an edge preserving mapping.) The existence of a homomorphism
f : G → H is traditionally denoted by G→H. This allows us to consider
the existence of a homomorphism, →, to be a (binary) relation on the class of
graphs. A homomorphism f is full if {u, v} /∈ EG implies {f(u), f(v)} /∈ EH .
(Thus it is an edge and non-edge preserving mapping). Similarly we will
denote by G F−→H the existence of a full homomorphism f : G→ H.

As it is well known, the relations → and F−→ are reflexive and transitive.
Thus the existence of a homomorphism as well as the existence of full homo-
morphisms induces a quasi-order on the class of all finite graphs. We denote
the quasi-order induced by the existence of homomorphisms and the existence
of full homomorphism on finite graphs by (Graphs,≤) and (Graphs,≤F ) re-
spectively. (Thus when speaking of orders, we use G ≤ H in the same sense
as G→H and G≤F H in the sense G F−→H.)

These quasi-orders can be transformed into partial orders by choosing a
particular representative for each equivalence class. In the case of graph ho-
momorphism such representative is up to isomorphism unique vertex minimal
element of each class, the (graph) core. In the case of full homomorphisms we
will speak of F-core.

The study of homomorphism order is a well established discipline and
one of main topics of nowadays classical monograph of Hell and Nešetřil [5].
The order (Graphs,≤F ) is a topic of several publications [9,2,4,1,3] which are
primarily concerned about the full homomorphism equivalent of the homo-
morphism duality [7].

In this work we further contribute to this line of research by characterising
F-gaps in (Graphs,≤F ). That is pairs of non-isomorphic F-cores G≤F H such
that every F-core H ′, G≤F H ′≤F H, is isomorphic either to G or H.

Theorem 1.1 If G and H are F-cores and (G,H) is an F-gap, then G can
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