

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 483–489

www.elsevier.com/locate/endm

Families with no matchings of size s

Peter Frankl²

Renyi Institute Budapest, Hungary

Andrey Kupavskii ^{1,2}

Moscow Institute of Physics and Technology Dolgoprudniy, Russia, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

Abstract

Let $k \geqslant 2$, $s \geqslant 2$ be positive integers. Let [n] be an n-element set, $n \geqslant ks$. Subsets of $2^{[n]}$ are called families. If $\mathcal{F} \subset {[n] \choose k}$, then it is called k-uniform. What is the maximum size $e_k(n,s)$ of a k-uniform family without s pairwise disjoint members? The well-known Erdős Matching Conjecture would provide the answer for all n, k, s in the above range. For n > 2ks it is known that the maximum is attained by $\mathcal{A}_1(T) := \{A \subset [n] : |A| = k, A \cap T \neq \emptyset\}$ for some fixed (s-1)-element set $T \subset X$. We discuss recent progress on this problem. In particular, our recent stability result states that for n > (2 + o(1))ks and a k-uniform family $\mathcal{F}, \mathcal{F} \nsubseteq \mathcal{A}_1(T)$, then $|\mathcal{F}|$ is considerably smaller.

This result is applied to obtain the corresponding anti-Ramsey numbers in a wide range.

Removing the condition of uniformness, we arrive at another classical problem of Erdős, which was solved by Kleitman for $n \equiv 0$ or $-1 \pmod{s}$. We succeeded

in resolving this long-standing problem for $n \equiv -2 \pmod{s}$ via a new averaging technique which might prove useful in various other situations.

Keywords: set families, matchings, Erdős Matching Conjecture, forbidden subconfigurations

1 Introduction

Put $[n] := \{1, 2, ..., n\}$ and let $2^{[n]}$ denote the power set of [n]. A subset $\mathcal{F} \subset 2^{[n]}$ is called a *family of subsets of* [n], or simply a *family*. For $0 \le k \le n$ we use the notation $\binom{[n]}{k} := \{H \subset [n] : |H| = k\}$.

The maximum number of pairwise disjoint members of a family \mathcal{F} is denoted by $\nu(\mathcal{F})$ and is called the *matching number* of \mathcal{F} . Let us define the following two quantities for $n, k, s \geq 2$:

$$e(n,s) := \max\{|\mathcal{F}| : \mathcal{F} \subset 2^{[n]}, \nu(\mathcal{F}) < s\},\$$

$$e_k(n,s) := \max\{|\mathcal{F}| : \mathcal{F} \subset {[n] \choose k}, \nu(\mathcal{F}) < s\}.$$

For s=2 both quantities were determined by Erdős, Ko and Rado [4]: $e(n,2)=2^{n-1},\ e_k(n,2)=\binom{n-1}{k-1}$ for $n\geqslant 2k$. For $s\geqslant 3$ this becomes a much harder task. Let us first discuss the k-uniform problem.

2 The uniform case. Stability

The following families are the natural candidates for being an extremal family of k-sets with no (s + 1)-matching:

$$\mathcal{A}_{i}^{(k)}(n,s) := \left\{ A \in {[n] \choose k} : \left| A \cap [(s+1)i - 1] \right| \geqslant i \right\}, \quad 1 \leqslant i \leqslant k. \quad (1)$$

Conjecture 1 (Erdős Matching Conjecture [2]) For $n \ge (s+1)k$ we have

$$e_k(n, s+1) = \max\{|\mathcal{A}_1^{(k)}(n, s)|, |\mathcal{A}_k^{(k)}(n, s)|\}.$$
 (2)

¹ Research supported by by the grant RNF 16-11-10014.

² Email: kupavskii@ya.ru

Email: peter.frankl@gmail.com

Download English Version:

https://daneshyari.com/en/article/5777111

Download Persian Version:

https://daneshyari.com/article/5777111

<u>Daneshyari.com</u>