

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 61 (2017) 561–567 www.elsevier.com/locate/endm

Covering and tiling hypergraphs with tight cycles

Jie Han $^{\rm a,1}\,$ Allan Lo $^{\rm b,2}\,$ Nicolás Sanhueza-Matamala $^{\rm b,3}\,$

^a Instituto de Matemática e Estatística, Universidade de São Paulo São Paulo, Brazil

> ^b School of Mathematics, University of Birmingham Birmingham, United Kingdom

Abstract

Given $3 \leq k \leq s$, we say that a k-uniform hypergraph C_s^k is a tight cycle on s vertices if there is a cyclic ordering of the vertices of C_s^k such that every k consecutive vertices under this ordering form an edge. We prove that if $k \geq 3$ and $s \geq 2k^2$, then every k-uniform hypergraph on n vertices with minimum codegree at least (1/2 + o(1))n has the property that every vertex is covered by a copy of C_s^k . Our result is asymptotically best possible for infinitely many pairs of s and k, e.g. when s and k are coprime.

A perfect C_s^k -tiling is a spanning collection of vertex-disjoint copies of C_s^k . When s is divisible by k, the problem of determining the minimum codegree that guarantees a perfect C_s^k -tiling was solved by a result of Mycroft. We prove that if $k \ge 3$ and $s \ge 5k^2$ is not divisible by k and s divides n, then every k-uniform hypergraph on n vertices with minimum codegree at least (1/2 + 1/(2s) + o(1))n has a perfect C_s^k -tiling. Again our result is asymptotically best possible for infinitely many pairs of s and k, e.g. when s and k are coprime with k even.

Keywords: hypergraphs, tiling, covering, tight cycles, codegree threshold

http://dx.doi.org/10.1016/j.endm.2017.07.008

1571-0653/© 2017 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Introduction

A hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ consists of a vertex set $V(\mathcal{H})$ and an edge set $E(\mathcal{H})$, where each edge $e \in E(\mathcal{H})$ is a subset of $V(\mathcal{H})$. Given a set V and a positive integer k, $\binom{V}{k}$ denotes the set of subsets of V with size exactly k. We say that a hypergraph \mathcal{H} is *k*-uniform if $E(\mathcal{H}) \subseteq \binom{V(\mathcal{H})}{k}$, and we abbreviate 'k-uniform hypergraphs' to *k*-graphs. Note that 2-graphs are usually known simply as graphs.

Given a hypergraph $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ and a set $S \subseteq V(\mathcal{H})$, let $\deg_{\mathcal{H}}(S)$ denote the number of edges of \mathcal{H} containing the set S. We denote by $\delta_s(\mathcal{H})$ the minimum s-degree of \mathcal{H} , that is, the minimum of $\deg_{\mathcal{H}}(S)$ over all s-element sets $S \in \binom{V(\mathcal{H})}{s}$. Note that $\delta_0(\mathcal{H})$ is equal to the number of edges of \mathcal{H} . Also, $\delta_{k-1}(\mathcal{H})$ and $\delta_1(\mathcal{H})$ are referred to as the minimum codegree and the minimum vertex degree of \mathcal{H} , respectively.

A typical question in extremal graph theory is: what is the smallest δ such that every k-graph \mathcal{H} on n vertices with $\delta_s(\mathcal{H}) \geq \delta$ has property P? In this work we focus our study on two different problems: the tiling problem and the covering problem.

1.1 Tiling thresholds

Let \mathcal{H} and F be k-graphs. An F-tiling in \mathcal{H} is a set of vertex-disjoint copies of F. An F-tiling is *perfect* if it spans the vertex set of \mathcal{H} . Note that a perfect F-tiling is also known as F-factor and *perfect* F-matching. For all $i, n \in \mathbb{Z}$ with $0 \leq i < k$, define the *i*th-degree tiling threshold $t_i(n, F)$ to be the maximum of $\delta_i(\mathcal{H})$ over k-graphs \mathcal{H} on n vertices without a perfect Ftiling. Note that if $n \not\equiv 0 \mod |V(F)|$ then a perfect F-tiling cannot exist and so, $t_i(n, F) = \binom{n-i}{k-i}$. Hence we will always assume that $n \equiv 0 \mod |V(F)|$ whenever we discuss $t_i(n, F)$.

In the graph case, the tiling thresholds are well understood. Hajnal and Szemerédi [5] showed that $t_1(n, K_t) = (1 - 1/t)n - 1$ for all $t \ge 2$. For a general graph F, Kühn and Osthus [8] determined $t_1(n, F)$ up to an additive constant depending only on F.

For $k \geq 3$, Kühn and Osthus [8] determined $t_{k-1}(n, K_k^k)$ asymptotically and

¹ Partially supported by FAPESP (Proc. 2013/03447-6, 2014/18641-5, 2015/07869-8). Email: jhan@ime.usp.br

² Partially supported by EPSRC, grant no. EP/P002420/1. Email: s.a.lo@bham.ac.uk

³ Partially supported by the Becas Chile scholarship scheme from CONICYT, Chile. Email: NIS564@bham.ac.uk

Download English Version:

https://daneshyari.com/en/article/5777122

Download Persian Version:

https://daneshyari.com/article/5777122

Daneshyari.com