



Available online at www.sciencedirect.com

**ScienceDirect** 

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 60 (2017) 25-31

www.elsevier.com/locate/endm

## Colourings of graphs by labellings

Martin Bača $^{1,2}$ 

Department of Appl. Mathematics and Informatics Technical University, Letná 9, SK-042 00 Košice, Slovak Republic

Stanislav Jendrol'<sup>1,3</sup>

Institute of Mathematics P.J. Šafárik University, Jesenná 5, SK-041 54 Košice, Slovak Republic

#### Abstract

In this paper we give a survey on several types of colourings of elements of graphs by different types of labellings.

*Keywords:* irregularity strength, total vertex (edge) irregularity strength, irregular colouring, proper colouring.

## 1 Introduction

All graphs considered in this paper are simple and finite. We use the standard graph theory terminology. For notions not defined in this paper see the book

http://dx.doi.org/10.1016/j.endm.2017.06.004 1571-0653/© 2017 Elsevier B.V. All rights reserved.

 $<sup>^1~</sup>$  This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and Slovak VEGA grant 1/0368/16

<sup>&</sup>lt;sup>2</sup> Email: martin.baca@tuke.sk

<sup>&</sup>lt;sup>3</sup> Email: stanislav.jendrol@upjs.sk

[10] of Bondy and Murty.

Let G = (V, E) be a graph with vertex set V and edge set E. If G = (V, E, F) is plane, then F denotes the set of faces of G. The set  $V \cup E$  and the set  $V \cup E \cup F$  is the set of elements of G. Let  $X \in \{V, E\}$ . For each element  $x \in X$ , let S(x) be a nonempty subset of the set of elements of G and  $S = \{S(x)|x \in X\} = \{S(x)\}$ . For positive integer k we consider a *labelling* of  $\bigcup_{x \in X} S(x)$ ; this is a mapping l from  $\bigcup_{x \in X} S(x)$  into the set of integers  $\{1, \ldots, k\}$ .

Furthermore, we define the corresponding colouring c by c(y) and  $c(y) = \sum_{x \in S(y)} l(x)$  for  $y \in X$ . The colouring c is called *irregular* if  $c(u) \neq c(v)$  for any two distinct elements u and v of X, and is called *proper* if  $c(u) \neq c(v)$  for any

two distinct elements u and v of X, and is called *proper*, if  $c(u) \neq c(v)$  for any two adjacent elements u and v of G, unless S(u) = S(v).

Moreover, for a vertex colouring and fixed S, let  $\chi_i(G, S)$  and  $\chi_p(G, S)$  be the minimum k such that there exists a corresponding irregular colouring and the corresponding proper colouring, respectively.

Note that  $\chi_i(G, \{\{v\}\}) = |V|$  and  $\chi_p(G, \{\{v\}\}) = \chi(G)$ , where  $\chi(G)$  is the chromatic number of G, see [22].

Analogously, for an edge colouring and fixed S, let  $\chi'_i(G, S)$  and  $\chi'_p(G, S)$ be the minimum k such that there exists a corresponding irregular colouring and the corresponding proper colouring, respectively. Note that  $\chi'_i(G, \{\{e\}\}) = |E|$  and  $\chi'_p(G, \{\{e\}\}) = \chi'(G)$ , where  $\chi'(G)$  is the chromatic index of G.

### 2 Colourings by edge labellings

Let  $N_E(v)$  denote the set of edges incident with  $v \in V$ . In 1988 Chartrand et al. [13] initiated a study of the parameter  $\chi_i(G, \{N_E(v)\})$ , which is called the *irregularity strength* of a graph G having no component  $K_2$  and at most one  $K_1$ .

Aigner and Triesch [3] proved that  $\chi_i(G, \{N_E(v)\}) \leq p-1$  if G is connected graph of order  $p, G \neq K_3$ , and  $\chi_i(G, \{N_E(v)\}) \leq p+1$  otherwise. Nierhoff [28] showed that this parameter is at most p-1 for all graphs distinct from  $K_3$ . The bound is tight e.g. for stars. For very nice surveys on this parameter see Lehel [26], a contribution by Frieze, Gould, Karoński, and Pfender [17], and a recent paper by Cuckler and Lazebnik [14]. Valuable contribution to this topic have been done by Przybyło [30,31].

Karoński, Łuczak, and Thomason posed the following well known and popular 1-2-3-conjecture:

Download English Version:

# https://daneshyari.com/en/article/5777152

Download Persian Version:

https://daneshyari.com/article/5777152

Daneshyari.com