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P.J. Šafárik University, Jesenná 5,
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Abstract

In this paper we give a survey on several types of colourings of elements of graphs
by different types of labellings.

Keywords: irregularity strength, total vertex (edge) irregularity strength,
irregular colouring, proper colouring.

1 Introduction

All graphs considered in this paper are simple and finite. We use the standard
graph theory terminology. For notions not defined in this paper see the book
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[10] of Bondy and Murty.

Let G = (V,E) be a graph with vertex set V and edge set E. If G =
(V,E, F ) is plane, then F denotes the set of faces of G. The set V ∪ E and
the set V ∪ E ∪ F is the set of elements of G. Let X ∈ {V,E}. For each
element x ∈ X, let S(x) be a nonempty subset of the set of elements of G and
S = {S(x)|x ∈ X} = {S(x)}. For positive integer k we consider a labelling of⋃
x∈X

S(x); this is a mapping l from
⋃

x∈X

S(x) into the set of integers {1, . . . , k}.
Furthermore, we define the corresponding colouring c by c(y) and c(y) =∑

x∈S(y)

l(x) for y ∈ X. The colouring c is called irregular if c(u) �= c(v) for any

two distinct elements u and v of X, and is called proper, if c(u) �= c(v) for any
two adjacent elements u and v of G, unless S(u) = S(v).

Moreover, for a vertex colouring and fixed S, let χi(G,S) and χp(G,S) be
the minimum k such that there exists a corresponding irregular colouring and
the corresponding proper colouring, respectively.

Note that χi(G, {{v}}) = |V | and χp(G, {{v}}) = χ(G), where χ(G) is the
chromatic number of G, see [22].

Analogously, for an edge colouring and fixed S, let χ′
i(G,S) and χ′

p(G,S)
be the minimum k such that there exists a corresponding irregular colouring
and the corresponding proper colouring, respectively. Note that χ′

i(G, {{e}})
= |E| and χ′

p(G, {{e}}) = χ′(G), where χ′(G) is the chromatic index of G.

2 Colourings by edge labellings

Let NE(v) denote the set of edges incident with v ∈ V . In 1988 Chartrand et
al. [13] initiated a study of the parameter χi(G, {NE(v)}), which is called the
irregularity strength of a graph G having no component K2 and at most one
K1.

Aigner and Triesch [3] proved that χi(G, {NE(v)}) ≤ p−1 if G is connected
graph of order p, G �= K3, and χi(G, {NE(v)}) ≤ p + 1 otherwise. Nierhoff
[28] showed that this parameter is at most p − 1 for all graphs distinct from
K3. The bound is tight e.g. for stars. For very nice surveys on this parameter
see Lehel [26], a contribution by Frieze, Gould, Karoński, and Pfender [17],
and a recent paper by Cuckler and Lazebnik [14]. Valuable contribution to
this topic have been done by Przyby�lo [30,31].

Karoński, �Luczak, and Thomason posed the following well known and
popular 1-2-3-conjecture:
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