Colourings of graphs by labellings

Martin Bača ${ }^{1,2}$
Department of Appl. Mathematics and Informatics
Technical University, Letná 9, SK-042 00 Košice, Slovak Republic

Stanislav Jendrol ${ }^{1,3}$
Institute of Mathematics
P.J. Safárik University, Jesenná 5, SK-041 54 Košice, Slovak Republic

Abstract

In this paper we give a survey on several types of colourings of elements of graphs by different types of labellings.

Keywords: irregularity strength, total vertex (edge) irregularity strength, irregular colouring, proper colouring.

1 Introduction

All graphs considered in this paper are simple and finite. We use the standard graph theory terminology. For notions not defined in this paper see the book

[^0][10] of Bondy and Murty.
Let $G=(V, E)$ be a graph with vertex set V and edge set E. If $G=$ (V, E, F) is plane, then F denotes the set of faces of G. The set $V \cup E$ and the set $V \cup E \cup F$ is the set of elements of G. Let $X \in\{V, E\}$. For each element $x \in X$, let $S(x)$ be a nonempty subset of the set of elements of G and $\mathcal{S}=\{S(x) \mid x \in X\}=\{S(x)\}$. For positive integer k we consider a labelling of $\bigcup_{x \in X} S(x)$; this is a mapping l from $\bigcup_{x \in X} S(x)$ into the set of integers $\{1, \ldots, k\}$.

Furthermore, we define the corresponding colouring c by $c(y)$ and $c(y)=$ $\sum_{x \in S(y)} l(x)$ for $y \in X$. The colouring c is called irregular if $c(u) \neq c(v)$ for any two distinct elements u and v of X, and is called proper, if $c(u) \neq c(v)$ for any two adjacent elements u and v of G, unless $S(u)=S(v)$.

Moreover, for a vertex colouring and fixed \mathcal{S}, let $\chi_{i}(G, \mathcal{S})$ and $\chi_{p}(G, \mathcal{S})$ be the minimum k such that there exists a corresponding irregular colouring and the corresponding proper colouring, respectively.

Note that $\chi_{i}(G,\{\{v\}\})=|V|$ and $\chi_{p}(G,\{\{v\}\})=\chi(G)$, where $\chi(G)$ is the chromatic number of G, see [22].

Analogously, for an edge colouring and fixed \mathcal{S}, let $\chi_{i}^{\prime}(G, \mathcal{S})$ and $\chi_{p}^{\prime}(G, \mathcal{S})$ be the minimum k such that there exists a corresponding irregular colouring and the corresponding proper colouring, respectively. Note that $\chi_{i}^{\prime}(G,\{\{e\}\})$ $=|E|$ and $\chi_{p}^{\prime}(G,\{\{e\}\})=\chi^{\prime}(G)$, where $\chi^{\prime}(G)$ is the chromatic index of G.

2 Colourings by edge labellings

Let $N_{E}(v)$ denote the set of edges incident with $v \in V$. In 1988 Chartrand et al. [13] initiated a study of the parameter $\chi_{i}\left(G,\left\{N_{E}(v)\right\}\right)$, which is called the irregularity strength of a graph G having no component K_{2} and at most one K_{1}.

Aigner and Triesch [3] proved that $\chi_{i}\left(G,\left\{N_{E}(v)\right\}\right) \leq p-1$ if G is connected graph of order $p, G \neq K_{3}$, and $\chi_{i}\left(G,\left\{N_{E}(v)\right\}\right) \leq p+1$ otherwise. Nierhoff [28] showed that this parameter is at most $p-1$ for all graphs distinct from K_{3}. The bound is tight e.g. for stars. For very nice surveys on this parameter see Lehel [26], a contribution by Frieze, Gould, Karoński, and Pfender [17], and a recent paper by Cuckler and Lazebnik [14]. Valuable contribution to this topic have been done by Przybyło [30,31].

Karoński, Łuczak, and Thomason posed the following well known and popular 1-2-3-conjecture:

Download Persian Version:
https://daneshyari.com/article/5777152

Daneshyari.com

[^0]: ${ }^{1}$ This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-15-0116 and Slovak VEGA grant 1/0368/16
 2 Email: martin.baca@tuke.sk
 ${ }^{3}$ Email: stanislav.jendrol@upjs.sk

