

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 55 (2016) 9-12

www.elsevier.com/locate/endm

Scheduling parallel jobs on heterogeneous platforms

Klaus Jansen 1,2

Department of Computer Science University of Kiel Kiel, Germany.

Denis Trystram³

Laboratoire d'Informatique University of Grenoble Grenoble, France.

Abstract

We consider the problem of scheduling parallel jobs on heterogeneous platforms. Given a set \mathcal{J} of n jobs where each job $j \in \mathcal{J}$ is described by a pair (p_j, q_j) with a processing time p_j and number q_j of processors required and a set of N heterogeneous platforms P_i with m_i processors, the goal is to find a schedule for all jobs on the platforms minimizing the maximum completion time. The problem is directly related to a two-dimensional multi strip packing problem. Unless P = NP there is no approximation algorithm with absolute ratio 2 improving the previously best known approximation algorithms. This closes the gap between the lower bound of < 2 and the best approximation ratio.

Keywords: scheduling parallel tasks, strip packing, approximation algorithms.

^{1571-0653/} $\ensuremath{\mathbb{C}}$ 2016 Elsevier B.V. All rights reserved.

1 Introduction

We study the problem of scheduling parallel jobs on heterogeneous platforms. The input consists of a set $\mathcal{J} = \{1, \ldots, n\}$ of n jobs and a set \mathcal{B} of N platforms P_1, \ldots, P_N , where each P_i consists of a set $M_i = \{1, \ldots, m_i\}$ of processors for $i \in [N] := \{1, \ldots, N\}$. The width of the platform P_i is the number m_i of processors. Each job $j \in \mathcal{J}$ is described by a pair (p_j, q_j) with a processing time (or height) $p_i \in \mathbb{N}$ and number of processors (or width) $q_i \in \mathbb{N}$ required to execute *j*. If all numbers m_i are equal, we have identical platforms. In the general case the numbers m_i may be different and the machines are called heterogeneous platforms. For simplification we suppose that $m_1 \geq m_2 \geq$ $\dots \geq m_N$. A schedule is an assignment $a: \mathcal{J} \to \mathbb{Q}_{>0} \times \bigcup_{i=1}^N 2^{M_i}$ that assigns every job j to a starting time $t_i = a_1(j)$ and to a subset $A_j = a_2(j) \subseteq M_i$ of processors of a platform P_i such that $|A_j| = q_j$. A job j can only be executed in platform P_i if the width of the platform $m_i \ge q_i$. A schedule is feasible if every processor in every platform executes at most one job at any time. The goal is to find a feasible schedule with minimum total length or makespan $\max_{i \in [N]} C_{max}(P_i)$ where $C_{max}(P_i) = \max_{j \mid A_j \subseteq M_i} t_j + p_j$ is the local makespan on platform P_i (or height of platform P_i). The optimum value for an instance $(\mathcal{J}, \mathcal{B})$ is denoted by $OPT(\mathcal{J}, \mathcal{B})$.

2 Previous and new Results

Approximation algorithms for neterogeneous platforms.			
		ratio	constraints
Tchernykh et al. [6]	2005	10	none
Schwiegelshohn et al. [5]	2008	3	non-clairvoyant
Tchernykh et al. [7]	2010	2e + 1	release dates
Bougeret et al. [1]	2010	2.5	$\max q_j \le \min m_i$
Dutot et al. [2]	2013	$(2+\epsilon)$	none
Jansen and Trystram(new result)	2016	2	none

 Table 1

 Approximation algorithms for heterogeneous platforms.

¹ Research supported by German Research Foundation (DFG), project Ja 612/12-2.

² Email: kj@informatik.uni-kiel.de

³ Email: trystram@imag.fr

Download English Version:

https://daneshyari.com/en/article/5777196

Download Persian Version:

https://daneshyari.com/article/5777196

Daneshyari.com