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Abstract

In this work, we propose a strategy for computing valid lower bounds for a specific
class of integer nonlinear programming problems, that includes integer quadratic
programming problems. This strategy is used within a branch-and-bound scheme.
Experimental results for randomly generated instances show that, in the quadratic
case, the devised branch-and-bound method compares favorably to the MIQP solver
of CPLEX 12.6 when the number of constraints is small.
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We consider integer optimization problems of the following form:

min f(x) = (x�Qx)p + L�x

s.t. Ax ≤ b

xi ∈ Z, i = 1, . . . , n

(1)

where Q ∈ R
n×n is a positive definite matrix, L ∈ R

n, A ∈ R
m×n, b ∈ R

m and
0.5 < p ≤ 1.

The motivation for studying this class of problems is twofold. From a prac-
tical point of view, Problem (1) includes problems that arise in applications,
such as portfolio optimization problems (see e.g. [1]). From a theoretical point
of view, defining effective algorithms to solve to global optimality Problem (1)
represents a big challenge in itself.
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In this work, following what has been done in recent papers by Buchheim
et al. (see e.g. [3], [4]), we propose a strategy for computing valid lower bounds
of Problem (1), with the idea of using this strategy within a branch-and-bound
scheme for MINLP problems.

The branch-and-bound scheme we consider enumerates nodes very quickly:
by fixing the branching order in advance, we gain the advantage of shifting
expensive computations into a preprocessing phase. In each node, the dual
problem of the continuous relaxation is solved in order to determine a local
lower bound. Since all constraints of the continuous relaxation of (1) are
affine, strong duality holds if the primal problem is feasible.

More precisely, assume that the variables with indices in I ⊆ {0, . . . , n}
have been fixed to values s = (si)i∈I . Then, Problem (1) reduces to the
minimization of

fs : Z
n−|I| → R, x �→ (x�Qsx+ c�s x+ ds)

p + Lsx+ es (2)

over the feasible region Fs = {x ∈ Z
n−|I| | Asx ≤ bs}, where the matrix Qs

is obtained by deleting the rows and columns corresponding to I, the matrix
As is obtained by deleting the columns corresponding to I, and the remaining
terms are updated appropriately.

Let Ls(x, λ) : Rn−|I| × R
m → R be the Lagrangian function associated

to the continuous relaxation at a generic node. In Section 1 we show how to
compute, for fixed λ, the unconstrained minimizer of the Lagrangian function,
so that the dual problem we end up with is a continuous problem with non-
negativity constraints:

max Ls(x
�(λ), λ)

s.t. λ ≥ 0;λ ∈ R
m,

(3)

where x�(λ) = argminx∈Rn−|I| Ls(x, λ).

Problem (3) is then solved by the feasible active set method for box con-
strained problems proposed in [2]. Since we are considering the dual problem,
it suffices to find an approximate solution, as each dual feasible solution yields
a valid lower bound. We can thus prune the branch-and-bound node as soon
as the current upper bound is exceeded by the value of any feasible iterate
produced in a solution algorithm for the dual problem.

Experimental results for randomly generated instances show that, in the
quadratic case (i.e. p = 1), the devised branch-and-bound method compares
favorably to the MIQP solver of CPLEX 12.6 when the number of constraints
is small.
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