
On the shelling antimatroids of split graphs

Keno Merckx 1
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Abstract

Unlike poset antimatroids, chordal graph shelling antimatroids have received little
attention as regard their structures, optimization properties and associated circuits.
Here we consider a special case of those antimatroids, namely the split graph shelling
antimatroids. We establish a connection between the structure of split graph shelling
antimatroids and poset shelling antimatroids. We discuss some applications of this
new connection, in particular, we give a simple polynomial time algorithm to find
a maximum weight feasible set in split graph shelling antimatroids.
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1 Introduction

Many classical problems in combinatorial optimization have the following
form.

Problem 1.1 For a set system (V,F) and for a function w : V → R, find a
set F of F maximizing the value of

w(F ) =
∑

f∈F

w(f).

For instance, the problem is known to be efficiently solvable for the in-
dependent sets of matroids using the greedy algorithm. Since antimatroids
capture a combinatorial abstraction of convexity in the same way as matroids
capture linear dependence, we investigate the optimization of linear objective
functions for antimatroids.

We recall that a set system (V,F), where V is a finite set of elements and
∅ �= F ⊆ 2V , is an antimatroid when

V ∈ F , (AM0)

∀F1, F2 ∈ F ⇒ F1 ∪ F2 ∈ F , (AM1)

∀F ∈ F and F �= ∅ ⇒ ∃ f ∈ F such that F \ {f} ∈ F . (AM2)

The feasible sets of the antimatroid (V,F) are the members of F . We call
path any feasible set that cannot be decomposed into the union of two other
(non-empty) feasible sets.

Antimatroids arise naturally from various kinds of shellings and searches
on combinatorial objects, and appear in various contexts in mathematics and
computer science. Dilworth [4] first examined structures very close to antima-
troids in terms of lattice theory. Later, Edelman [5] and Jamison [7] studied
the convex aspects of antimatroids. Korte, Lovász and Schrader [8] considered
antimatroids as a subclass of greedoids. Today, the concept of antimatroid ap-
pears in many fields of mathematics such as formal language theory (Boyd and
Faigle [2]), choice theory (Koshevoy [9]), game theory (Algaba et al. [1]) and
mathematical psychology (Falmagne and Doignon [6]) among others. The
concept of a convex geometry is dual to the one of an antimatroid.

For instance, one particular class of antimatroids comes from shelling pro-
cesses over posets by removing successively the maximum elements. Let (V,≤)
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