

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Small doubling in ordered nilpotent groups of class 2

European Journal of Combinatorics

Gregory A. Freiman^a, Marcel Herzog^a, Patrizia Longobardi^b, Mercede Maj^b, Yonutz V. Stanchescu^{c,d}

^a Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

^b Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy

^c The Open University of Israel, Raanana 43107, Israel

^d Afeka Academic College, Tel Aviv 69107, Israel

ARTICLE INFO

Article history: Received 11 January 2016 Accepted 13 July 2017 Available online 17 August 2017

Keywords: Ordered groups Finite subsets Small doubling Nilpotent groups

ABSTRACT

The aim of this paper is to present a complete description of the structure of finite subsets *S* of torsion-free nilpotent groups of class 2 satisfying $|S^2| = 3|S| - 2$. In view of results in [12], this gives a complete description of the structure of finite subsets with the above property in any torsion-free nilpotent group.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let α and β denote real numbers, with $\alpha > 1$. A finite subset *S* of a group *G* is said to satisfy the *small doubling property* if

$$|S^2| \le \alpha |S| + \beta ,$$

where $S^2 = \{s_1 s_2 \mid s_1, s_2 \in S\}.$

The classical Freiman's inverse theorems describe the structure of finite subsets of abelian groups, which satisfy the small doubling property (see [6–9,19] and [22]). Recently, several authors obtained similar results concerning various classes of groups for an arbitrary α (see for example [2–5,10,15–17,21,23,24] and [25]).

http://dx.doi.org/10.1016/j.ejc.2017.07.006

0195-6698/© 2017 Elsevier Ltd. All rights reserved.

E-mail addresses: grisha@post.tau.ac.il (G.A. Freiman), herzogm@post.tau.ac.il (M. Herzog), plongobardi@unisa.it (P. Longobardi), mmaj@unisa.it (M. Maj), ionut@openu.ac.il, yonis@afeka.ac.il (Y.V. Stanchescu).

In particular E. Breuillard and B. Green in [3] and M. Tointon in [25] investigated the problem in the case of *G* being a nilpotent group.

In [10] we started the investigation of finite subsets of *ordered groups* satisfying the small doubling property with $\alpha = 3$ and small $|\beta|$. We proved that if (G, <) is an ordered group and S is a finite subset of G of size $k \ge 2$, such that $|S^2| \le 3k - 3$, then $\langle S \rangle$ is abelian. Furthermore, if $k \ge 3$ and $|S^2| \le 3k - 4$, then there exist $x_1, g \in G$ such that $g > 1, gx_1 = x_1g$ and S is a subset of the geometric progression $\{x_1, x_1g, x_1g^2, \ldots, x_1g^{t-k}\}$, where $t = |S^2|$. We also showed that these results are best possible, by presenting an example of an ordered group with a subset S of size k with $\langle S \rangle$ non-abelian and $|S^2| = 3k - 2$.

Other recent results concerning small doubling properties appear in [11–14].

In [12] we studied finite subsets *S* of torsion-free nilpotent groups such that $|S^2| = 3k - 2$.

The aim of the present paper is to give a complete description of the structure of subsets *S* of size *k* in torsion-free nilpotent groups satisfying $|S^2| = 3k - 2$.

It is known that torsion-free nilpotent groups are orderable (see [18] and [20]), so the results in [10] apply. Furthermore, we can assume that the class of *G* is 2, because of Theorem 5 and Corollary 3 in [12].

Our main result is the following theorem.

Theorem 1.1. Let G be a torsion-free nilpotent group and let S be a subset of G of size $k \ge 4$ with $\langle S \rangle$ non-abelian. Then $|S^2| = 3k - 2$ if and only if there exist a, b, $c \in G$ and non-negative integers i, j such that

$$S = \{a, ac, \ldots, ac^{i}, b, bc, \ldots, bc^{j}\},\$$

with $1 + i + 1 + j = k, c \neq 1$ and $[a, b] = c^{\pm 1}$.

Here $[a, b] = a^{-1}b^{-1}ab$ is the commutator of the elements *a*, *b*.

We refer to [1] and [18] for results concerning ordered groups. In particular, we use at several places the following result proved by B.H. Neumann in [20].

Proposition. If G is an ordered group and $a, b \in G$ are such that a commutes with b^n for some integer $n \ge 1$, then a commutes with b.

2. Some general results

We start with the following two very useful lemmas.

Lemma 2.1. Let (G, <) be an ordered nilpotent group of class 2 and let S be a subset of G of size $k \ge 3$, satisfying

 $S = \{x_1, \ldots, x_k\}, \ x_1 < x_2 < \cdots < x_k.$

Let $T = \{x_1, \ldots, x_{k-1}\}$ and for any positive $j \le k - 1$, let $T_j = \{x_j, \ldots, x_{k-1}\}$. Suppose that for some positive $i \le k - 2$, we have

 $\{x_i x_k, x_k x_i\} \subseteq T^2$.

Then either $x_i x_k$ or $x_k x_i$ belongs to T_{i+1}^2 .

Proof. Write $x_i x_k = x_j x_l$, for suitable $l, j \le k - 1$, then $j \ge i + 1$. Similarly, write $x_k x_i = x_s x_t$, for some $s, t \le k - 1$, then $t \ge i + 1$. We claim that either $l \ge i + 1$ or $s \ge i + 1$. We have $x_i x_k = x_k x_i [x_i, x_k]$ and either $[x_i, x_k] \ge 1$ or $[x_i, x_k] \le 1$. Suppose, for example, that $[x_i, x_k] \ge 1$. Then $[x_k, x_i] \le 1$, and $x_s x_t = x_k x_i = x_i x_k [x_k, x_i] \le x_i x_k$, thus, from t < k it follows that $s \ge i + 1$. Similarly, if $[x_i, x_k] \le 1$, we get $l \ge i + 1$. \Box

Download English Version:

https://daneshyari.com/en/article/5777334

Download Persian Version:

https://daneshyari.com/article/5777334

Daneshyari.com