
European Journal of Combinatorics 67 (2018) 158–173

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Modular flip-graphs of one-holed surfaces
Hugo Parlier a, Lionel Pournin b

a Mathematics Research Unit, University of Luxembourg, Luxembourg
b LIPN, Université Paris 13, Villetaneuse, France

a r t i c l e i n f o

Article history:
Received 7 November 2016
Accepted 7 July 2017

a b s t r a c t

We study flip-graphs of triangulations on topological surfaces
where distance is measured by counting the number of necessary
flip operations between two triangulations.We focus on surfaces of
positive genus g with a single boundary curve and nmarked points
on this curve and consider triangulations up to homeomorphism
with the marked points as their vertices. Our results are bounds
on the maximal distance between two triangulations. Our lower
bounds assert that these distances grow at least like 5n/2 for all
g ≥ 1. Our upper bounds grow atmost like [4−1/(4g)]n for g ≥ 2,
and at most like 23n/8 for the bordered torus.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The set of triangulations of a given surface can be given a geometry by defining the distance
between two triangulations as the necessary number of flip operations needed to transform one of
them into the other. As stated, this definition is somewhat vague, but if the surface is a (Euclidean)
polygon and we think of triangulations as being geometric (realized by line segments), then a flip
consists in removing an edge from a triangulation and replacing it by the unique other edge so that the
result is still a triangulation of the polygon. Given this geometry, the set of triangulations of a polygon
is well studied: it is the graph of the associahedron [4,10–12]. In particular its diameter is 2n− 10 for
n > 12 [8,9]. Such graphs, called flip-graphs arise in a number of other, yet related settings [1,5] and,
when they are connected, finding their diameter is often notoriously difficult.

The graph of the associahedron can be defined in purely topological terms: a polygon is a
topological disk with n marked points on its boundary and a triangulation is a maximal collection
of disjoint isotopy classes of arcs whose endpoints are among the marked points. (The isotopies are
relative to the endpoints and by disjoint it is meant disjoint in their interiors.) Flip transformations

E-mail addresses: hugo.parlier@uni.lu (H. Parlier), lionel.pournin@univ-paris13.fr (L. Pournin).

http://dx.doi.org/10.1016/j.ejc.2017.07.003
0195-6698/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejc.2017.07.003
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2017.07.003&domain=pdf
mailto:hugo.parlier@uni.lu
mailto:lionel.pournin@univ-paris13.fr
http://dx.doi.org/10.1016/j.ejc.2017.07.003


H. Parlier, L. Pournin / European Journal of Combinatorics 67 (2018) 158–173 159

are topological; one way of defining them is that two triangulations are related by a flip if they differ
only in one edge. This topological description works when one replaces the disk by any finite type
surface with marked points, provided there are marked points on each boundary curve. However,
provided the surface has enough topology (for instance if it has positive genus), the flip-graph is
infinite and has infinite diameter. Themapping class group (the self-homeomorphisms up to isotopy)
of the underlying surface acts nicely on it: indeed it is basically the isomorphism group of the graph
(see Section 2 for precise definitions, statements, and references). As such,we can quotient flip-graphs
to obtain well-defined finite graphs whose vertices represent all possible types of triangulations and
whose diameter can be measured. We call these graphs modular flip-graphs and we are interested in
their geometry.

In a previous paper [7], we explored the diameter of the modular flip-graphs of filling surfaces:
these surfaces have a privileged boundary curve, but otherwise arbitrary topology. In particular, they
were allowed to have interior marked points, more than one boundary, and arbitrary genus. Here we
focus our attention to the special case of one-holed surfaces that have a unique boundary curve and
no interior marked points. We investigate the growth of the diameter of the corresponding modular
flip-graphs in function of the number of marked points on the boundary, while the genus is fixed.
These points are labeled: we quotient by homeomorphisms that leave them individually fixed.

The case that we focus on most is the torus; it provides a natural variant on the case of the disk
and, as we shall see, is already quite intriguing. For this surface we are able to prove the following.

Theorem 1. Let Σn be a one-holed torus with n marked points on the boundary and let MF(Σn) be its
modular flip-graph. Then⌊

5
2
n
⌋

− 2 ≤ diam(MF(Σn)) ≤
23
8

n + 8.

There is a clear gap between our upper and lower bounds (on the order of 3n/8 for large n) that
we are unable to close; in fact it is even tricky to guess what the correct growth rate might be. We
point out that, in the instances where matching upper and lower bounds are known [7–9] the lower
bounds have always been the more difficult ones to obtain.

The methods used to prove the above theorem also provide more general results about surfaces of
arbitrary genus g ≥ 1.

Theorem 2. Let Σn be a one-holed surface of genus g ≥ 1 with n marked points on the boundary and let
MF(Σn) be its modular flip-graph. Then⌊
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− 2 ≤ diam(MF(Σn)) ≤

(
4 −

1
4g

)
n + Kg ,

where Kg only depends on g.

As a direct consequence of this result and the results of [7], we obtain the following.

Corollary 1. Let Σn be a filling surfacewith fixed topology and nmarked points on the privileged boundary.
If this surface is not homeomorphic to a disk or a once-punctured disk, then the diameter of its modular
flip-graph grows at least as 5n/2.

2. Preliminaries

We begin this section by defining and describing the objects we are interested in.
Our basic setup is as follows. Consider an orientable topological surface Σ of finite type with a

single boundary curve. It has no marked points on it but will be endowed with them in what follows.
We will denote by g ≥ 0 the genus of Σ (so if g = 0 then Σ is a disk).

For any positive integer n, from Σ we obtain a surface Σn by placing n marked points on the
boundary of Σ , that we refer to as a one-holed surface. These marked points are labeled from a1 to
an, clockwise around the boundary. We are interested in triangulating Σn and studying the geometry
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