ARTICLE IN PRESS

European Journal of Combinatorics [(

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On solution-free sets of integers

Robert Hancock, Andrew Treglown

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

ARTICLE INFO

Article history: Available online xxxx

ABSTRACT

Given a linear equation \mathcal{L} , a set $A \subseteq [n]$ is \mathcal{L} -free if A does not contain any 'non-trivial' solutions to \mathcal{L} . In this paper we consider the following three general questions:

- (i) What is the size of the largest \mathcal{L} -free subset of [n]?
- (ii) How many \mathcal{L} -free subsets of [n] are there?
- (iii) How many maximal *L*-free subsets of [*n*] are there?

We completely resolve (i) in the case when \mathcal{L} is the equation px + qy = z for fixed $p, q \in \mathbb{N}$ where $p \geq 2$. Further, up to a multiplicative constant, we answer (ii) for a wide class of such equations \mathcal{L} , thereby refining a special case of a result of Green (2005). We also give various bounds on the number of maximal \mathcal{L} -free subsets of [n] for three-variable homogeneous linear equations \mathcal{L} . For this, we make use of container and removal lemmas of Green (2005).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $[n] := \{1, \ldots, n\}$ and consider a fixed linear equation \mathcal{L} of the form

$$a_1x_1 + \cdots + a_kx_k = b$$

where $a_1, \ldots, a_k, b \in \mathbb{Z}$. If b = 0 we say that \mathcal{L} is homogeneous. If

$$\sum_{i\in[k]}a_i=b=0$$

then we say that \mathcal{L} is *translation-invariant*. Let \mathcal{L} be translation-invariant. Then notice that (x, \ldots, x) is a 'trivial' solution of (1) for any x. More generally, a solution (x_1, \ldots, x_k) to \mathcal{L} is said to be *trivial* if there exists a partition P_1, \ldots, P_ℓ of [k] so that:

(1)

E-mail addresses: rah410@bham.ac.uk (R. Hancock), a.c.treglown@bham.ac.uk (A. Treglown).

http://dx.doi.org/10.1016/j.ejc.2017.06.018

^{0195-6698/© 2017} Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

R. Hancock, A. Treglown / European Journal of Combinatorics [(]]]

- (i) $x_i = x_j$ for every *i*, *j* in the same partition class P_r ;
- (ii) For each $r \in [\ell]$, $\sum_{i \in P_r} a_i = 0$.

A set $A \subseteq [n]$ is \mathcal{L} -free if A does not contain any non-trivial solutions to \mathcal{L} . If the equation \mathcal{L} is clear from the context, then we simply say A is solution-free.

The notion of an \mathcal{L} -free set encapsulates many fundamental topics in combinatorial number theory. Indeed, in the case when \mathcal{L} is $x_1 + x_2 = x_3$ we call an \mathcal{L} -free set a *sum-free set*. This is a notion that dates back to 1916 when Schur [34] proved that, if *n* is sufficiently large, any *r*-colouring of [*n*] yields a monochromatic triple *x*, *y*, *z* such that x + y = z. Sidon sets (when \mathcal{L} is $x_1 + x_2 = x_3 + x_4$) have also been extensively studied. For example, a classical result of Erdős and Turán [16] asserts that the largest Sidon set in [*n*] has size $(1 + o(1))\sqrt{n}$. In the case when \mathcal{L} is $x_1 + x_2 = 2x_3$ an \mathcal{L} -free set is simply a progression-free set. Roth's theorem [27] states that the largest progression-free subset of [*n*] has size *o*(*n*). In [28,29], Ruzsa instigated the study of solution-free sets for general linear equations.

In this paper we prove a number of results concerning \mathcal{L} -free subsets of [n] where \mathcal{L} is a homogeneous linear equation in *three variables*. In particular, our work is motivated by the following general questions:

- (i) What is the size of the largest \mathcal{L} -free subset of [n]?
- (ii) How many \mathcal{L} -free subsets of [n] are there?
- (iii) How many maximal \mathcal{L} -free subsets of [n] are there?

We make progress on all three of these questions. For each question we use tools from graph theory; for (i) and (ii) our methods are somewhat elementary. For (iii) our method is more involved and utilises container and removal lemmas of Green [18].

1.1. The size of the largest solution-free set

As highlighted above, a central question in the study of \mathcal{L} -free sets is to establish the size $\mu_{\mathcal{L}}(n)$ of the largest \mathcal{L} -free subset of [n]. It is not difficult to see that the largest sum-free subset of [n] has size [n/2], and this bound is attained by the set of odd numbers in [n] and by the interval [|n/2| + 1, n].

When \mathcal{L} is $x_1 + x_2 = 2x_3$, $\mu_{\mathcal{L}}(n) = o(n)$ by Roth's theorem. In fact, very recently Bloom [9] proved that there is a constant *C* such that every set $A \subseteq [n]$ with $|A| \ge Cn(\log \log n)^4/\log n$ contains a three-term arithmetic progression. On the other hand, Behrend [7] showed that there is a constant c > 0 so that $\mu_{\mathcal{L}}(n) \ge n \exp(-c\sqrt{\log n})$. See [15,19] for the best known lower bound on $\mu_{\mathcal{L}}(n)$ in this case.

More generally, it is known that $\mu_{\mathcal{L}}(n) = o(n)$ if \mathcal{L} is translation-invariant and $\mu_{\mathcal{L}}(n) = \Omega(n)$ otherwise (see [28]). For other (exact) bounds on $\mu_{\mathcal{L}}(n)$ for various linear equations \mathcal{L} see, for example, [28,29,6,14,21].

In this paper we mainly focus on \mathcal{L} -free subsets of [n] for linear equations \mathcal{L} of the form px + qy = zwhere $p \ge 2$ and $q \ge 1$ are fixed integers. Notice that for such a linear equation \mathcal{L} , the interval $\lfloor \lfloor n/(p+q) \rfloor + 1, n \rfloor$ is an \mathcal{L} -free set. Our first result implies that this is the largest such \mathcal{L} -free subset of [n]. Let min(S) denote the smallest element in a finite set $S \subseteq \mathbb{N}$.

Theorem 1. Let \mathcal{L} denote the equation px + qy = z where $p \ge q$ and $p \ge 2$, $p, q \in \mathbb{N}$. Let S be an \mathcal{L} -free subset of [n], and let $\min(S) = \lfloor \frac{n}{p+q} \rfloor - t$ where t is a non-negative integer.

(i) If
$$0 \le t < (\frac{p+q-1}{p+q+p/q})\lfloor \frac{n}{p+q} \rfloor$$
 then $|S| \le \lceil \frac{(p+q-1)n}{p+q} \rceil - \lfloor \frac{p}{q}t \rfloor$.

(ii) If
$$t \ge \left(\frac{p+q-1}{p+q+p/q}\right) \lfloor \frac{n}{p+q} \rfloor$$
 then $|S| \le \frac{(q^2+1)n}{q^2+q+1}$ provided that

$$n \ge \max\left\{\frac{3(q^2+q+1)(q^3+p(q^2+q+1))}{q^2+1}, \\ \frac{5(q^2+q+1)(q^5+p(q^4+q^3+q^2+q+1))}{q^4+(p-1)q^3+q^2+1}\right\}$$

In both cases of Theorem 1 we observe that $|S| \le n - \lfloor \frac{n}{p+q} \rfloor$, hence the following corollary holds.

2

Download English Version:

https://daneshyari.com/en/article/5777362

Download Persian Version:

https://daneshyari.com/article/5777362

Daneshyari.com