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a b s t r a c t

The Golomb–Welch conjecture states that there are no perfect
e-error-correcting codes in Zn for n ≥ 3 and e ≥ 2. In this note,
we prove the nonexistence of perfect 2-error-correcting codes for a
certain class ofn, which is expected to be infinite. This result further
substantiates the Golomb–Welch conjecture.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For an integer q ≥ 2, consider the space (Z/qZ)n equipped with the Lee metric d given by

d(x, y) =

n∑
i=1

min{|xi − yi|, q − |xi − yi|}.

An e-error-correcting Lee code is a subset C ⊆ (Z/qZ)n such that any two distinct elements of C have
distance at least 2e + 1. An e-error-correcting Lee code C is further called a perfect e-error-correcting
Lee code if for each x ∈ (Z/qZ)n, there exists a unique element c ∈ C such that d(x, c) ≤ e. A perfect
e-error-correcting Lee code in (Z/qZ)n is also called simply a PL(n, e, q)-code.

There is an equivalent description of error-correcting Lee codes that uses the language of tilings.
Consider the Lee sphere

S(n, e, q) = {x ∈ (Z/qZ)n : d(x, 0) ≤ e}

of radius e. An e-error-correcting Lee code is a subset C ⊆ (Z/qZ)n such that for any x ̸= y in C , the
two spheres x + S(n, e, q) and y + S(n, e, q) are disjoint. Thus it can be naturally identified with a
translational packing of S(n, e, q) in (Z/qZ)n. A perfect e-error-correcting Lee code then corresponds
to a translational tiling of (Z/qZ)n by S(n, e, q).
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If q ≥ 2e + 1, then the natural projection map Zn
→ (Z/qZ)n restricts to a bijection from

S(n, e) = {x ∈ Zn
: |x1| + |x2| + · · · + |xn| ≤ e}

to S(n, e, q). Any tiling of (Z/qZ)n by S(n, e, q) will then pull back via the projection to a tiling of Zn by
S(n, e). Let us call a subset C ⊆ Zn a perfect e-error-correcting Lee code in Zn, or simply a PL(n, e)-code,
if the translates of S(n, e) centered at vectors of C form a tiling of Zn. Then a PL(n, e, q)-code induces a
PL(n, e)-code that is a disjoint union of cosets of qZn

⊂ Zn. Conversely, any such PL(n, e)-code clearly
comes from a PL(n, e, q)-code. We restate this in the following proposition.

Proposition 1. For q ≥ 2e + 1, there exists a natural bijection between PL(n, e, q)-codes and PL(n, e)-
codes that is a union of cosets of qZn

⊂ Zn, given by taking the image or the inverse image with respect
to the projection map Zn

→ (Z/qZ)n.

Thus to know all about PL(n, e, q)-codes, it suffices to study PL(n, e)-codes.
Error-correcting codes in the Lee metric have been first investigated by Golomb and Welch [2].

In the paper, they explicitly construct PL(1, e, 2e + 1)-codes, PL(2, e, 2e2 + 2e + 1)-codes, and
PL(n, 1, 2n + 1)-codes. On the other hand, they conjecture the nonexistence of perfect Lee codes for
other n and e.

Conjecture 2. For n ≥ 3 and e ≥ 2, there exist no PL(n, e)-codes.

The case when e is ‘‘large’’ compared to n is studied extensively in the literature. Golomb and
Welch [2] proved using a compactness argument that for each n ≥ 3, there exists a sufficiently large
ρn such that there exist no PL(n, e)-codes for each e ≥ ρn. An effective form of this theorem, that
PL(n, e, q)-codes do not exist for 3 ≤ n ≤ 5, e ≥ n−1, q ≥ 2e+1 and n ≥ 6, e ≥

√
2
2 n−

3
4

√
2−

1
2 , q ≥

2e + 1, was subsequently shown by Post [8]. Lepistö [7] improved the bound asymptotically and
obtained the following theorem.

Theorem 3. For any n, e, q satisfying n ≥ (e + 2)2/2.1 and e ≥ 285 and q ≥ 2e + 1, there exist no
PL(n, e, q)-codes.

Another direction of approach is to focus on small n. Gravier, Mollard, and Payan [3] showed the
nonexistence of PL(3, e)-codes by analyzing possible local configurations. Later a computer-based
proof of the nonexistence of PL(4, e)-codes was given by Špacapan [9], and Horak [5] further extended
the theorem to prove nonexistence of PL(n, e)-codes for 3 ≤ n ≤ 5 and e ≥ 2. In recent years, the case
e = 2 has been investigated for reasonably small n. For n = 5, 6, Horak [4] showed that PL(5, 2)-codes
and PL(6, 2)-codes do not exist, and Horak and Grosěk [6] further showed using a computer that for
7 ≤ n ≤ 12 there are no linear PL(n, 2)-codes, i.e., PL(n, 2)-codes that is a lattice in Zn.

In this note, we continue along this line and provide a number theoretic condition under which
PL(n, 2)-codes do not exist. In particular, we prove the following theorem.

Theorem 4. Suppose p = 2n2
+ 2n + 1 is prime. Let a be the smallest positive integer for which

p | 4a
+ 4n + 2 and b be the smallest positive integer for which p | 4b

− 1. (For convenience let a = ∞ if
there is no a with p | 4a

+4n+2.) If the equation a(x+1)+ by = n has no nonnegative integer solutions,
then PL(n, 2)-codes do not exist. For instance, there are no PL(n, 2)-codes for n = 5, 7, 9, 12, 14, 17, . . ..

To illustrate the strength of this theorem, we provide numerical data concerning the number of n
to which the theorem can be applied. As in Table 1, if 2n2

+ 2n + 1 is indeed prime, in most cases the
second condition about the equation having no nonnegative solutions is also satisfied. It is reasonable
to expect that there are infinitely many n such that 2n2

+ 2n + 1 is prime, although it is far from
being proved. This is a special case of the Bunyakovsky conjecture, and moreover the heuristics of
the Bateman–Horn conjecture [1] expects there to be asymptotically Cx/log x such n ≤ x for some
absolute constant C .

The condition 2n2
+2n+1 = |S(n, 2)| being prime is included in order to use a result that allows us

to translate the tiling problem to a purely algebraic problem. The following theorem is proved in [10].
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