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the corresponding result for matroids, obtained independently by
Brylawski and Seymour. Further corollaries give splitter theorems
for delta-matroids and ribbon graphs.
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1. Introduction

A matroid M = (E, B) is a finite ground set E together with a non-empty collection of subsets
of the ground set, B, that are called bases, satisfying the following conditions, which are stated in a
slightly different way from what is most common in order to emphasize the connection with other
combinatorial structures discussed in this paper.

1. If B1 and B2 are bases and x ∈ B1 △ B2, then there exists y ∈ B1 △ B2 such that B1 △ {x, y} is a basis.
2. All bases are equicardinal.

Matroid theory is often thought of as a generalization of graph theory, as a matroid (M, B) may
be constructed from a graph G by taking E to be set of edges of G and B to be the edge sets of
maximal spanning forests ofG. Graph theory andmatroid theory aremutually enriching:many results
in graph theory have been generalized to matroids, and results in matroid theory have sometimes
been proved before the corresponding specialization in graph theory. In [13], Chun, Moffatt, Noble
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and Rueckriemen showed that the mutually-enriching relationship between graphs and matroids is
analogous to the mutually-enriching relationship between cellularly-embedded graphs, which we
view as ribbon graphs, and objects called delta-matroids. They gave further evidence for this by
establishing several new results for delta-matroids in [12], each of whichwas inspired by a previously
known result concerning ribbon graphs.

Delta-matroids were extensively studied by Bouchet in the 1980s, but until recently had been
little studied since that foundational work. In addition to [12,13], where the authors were led
to delta-matroids by studying ribbon graphs, they have been studied extensively by Brijder and
Hoogeboom who were originally interested in the principal pivot transform in binary matrices (see,
for example, [7–9]).

A delta-matroid D = (E, F ) is a finite ground set E together with a non-empty collection of subsets
of the ground set, F , that are called feasible sets, satisfying the following condition known as the
symmetric exchange axiom. If F1 and F2 are feasible sets and x ∈ F1 △ F2, then there exists y ∈ F1 △ F2
such that F1 △ {x, y} is a feasible set. Note that we allow y = x. It follows immediately from the
definitions that every matroid is a delta-matroid. In fact, the axiom for the feasible sets of a delta-
matroid corresponds exactly to (1) in the axioms we gave earlier for the bases of a matroid. A delta-
matroid is said to be even if the sizes of its feasible sets all have the same parity. Thus a matroid is an
even delta-matroid.

As inmany other areas of mathematics, structural results onmatroids often require an assumption
of some level of connectivity of the matroid. In [15], Geelen defined connectivity for delta-matroids
as follows. Given delta-matroids D1 = (E1, F1) and D2 = (E2, F2) with disjoint ground sets, their
direct sum, written D1 ⊕ D2, is the delta-matroid with ground set E1 ∪ E2 and collection of feasible
sets {F1 ∪ F2 : F1 ∈ F1 and F2 ∈ F2}. If D = D1 ⊕ D2 then we say that E(D1) and E(D2) are
separators of D. If X is a separator of a delta-matroid D and ∅ ≠ X ≠ E(D) then we say that X is a
proper separator of D. A delta-matroid D is disconnected if it has a proper separator. Otherwise D is
connected. Clearly the matroids that satisfy the definition of delta-matroid connectivity are exactly
those that satisfy the well-known definition of matroid connectivity [19]. Moreover when applied to
matroids, the definition of a separator in a delta-matroid is exactly the same as that of a separator in a
matroid [19]. Our aim is to study the effect on connectivity of removing elements fromadelta-matroid.
As a consequence we provide useful tools for inductive proofs of results concerning 2-connected
ribbon graphs, which we define later.

Deletion and contraction are the two natural ways in which to remove an element from a matroid
or delta-matroid. For a delta-matroid D = (E, F ), and e ∈ E, if e is in every feasible set of D, then we
say that e is a coloop of D. If e is in no feasible set of D, then we say that e is a loop of D. If e is not a
coloop, then, following Bouchet and Duchamp [6], we define D delete e, written D\e, to be

D\e = (E − e, {F : F ∈ F and F ⊆ E − e}).

If e is not a loop, then we define D contract e, written D/e, to be

D/e = (E − e, {F − e : F ∈ F and e ∈ F}).

If e is a loop or coloop, then D/e = D\e.
Both D\e and D/e are delta-matroids (see [6]). Let D′ be a delta-matroid obtained from D by a

sequence of deletions and contractions. Then D′ is independent of the order of the deletions and
contractions used in its construction (see [6]) andD′ is called aminor ofD.We letD|A denoteD\(E−A).
All of these definitions are entirely consistent with the corresponding better-known definitions for
matroids.

Two early results describing the effect of deleting or contracting an element from a matroid are
the following. The first was proved by Tutte [21] and the second independently by Brylawski [10] and
Seymour [20].

Theorem 1.1. Let e be an element of a connected matroid M. Then either M\e or M/e is connected.

Theorem 1.2. Let N be a connected minor of a connected matroid M and let e be an element of E(M) −

E(N). Then either M/e or M\e is connected and has N as a minor.
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