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a b s t r a c t

We prove new upper bounds on the multicolour Ramsey numbers
of paths and even cycles. It is well known that (k − 1)n + o(n) ⩽
Rk(Pn) ⩽ Rk(Cn) ⩽ kn + o(n). The upper bound was recently
improved by Sárközy who showed that Rk(Cn) ⩽

(
k −

k
16k3+1

)
n +

o(n). Here we show Rk(Cn) ⩽ (k −
1
4 )n + o(n), obtaining the first

improvement to the coefficient of the linear term by an absolute
constant.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ramsey theory is one of the central areas of study in combinatorics and a key problem in the field
is that of determining the Ramsey numbers of graphs, defined as follows. For a graph G, the Ramsey
number Rk(G) is the least integer N such that any colouring of the edges of the complete graph KN
on N vertices with k colours yields a monochromatic copy of G. The existence of Ramsey numbers is
guaranteed by Ramsey’s classical result [15], but in the case k ⩾ 3, determining the value of Rk(G) for a
given graph G is inmost cases difficult. There are only a few graphs G for whichwe know Rk(G) exactly
and often one has to settle for bounds on this quantity. In this paperwe focus on the casewhereG is the
n-vertex path Pn, and the case where n is even and G is the n-vertex cycle Cn. The two-colour Ramsey
number of a pathwas completely determined byGerencsér andGyárfás [9]who showed that for n ⩾ 2

R2(Pn) =

⌊
3n − 2

2

⌋
.

For three colours, Faudree and Schelp [6] conjectured that

R3(Pn) =

{
2n − 2 for n even ,

2n − 1 for n odd .
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This conjecture was resolved for large n by Gyárfás, Ruszinkó, Sárközy and Szemerédi [10] but for
k ⩾ 4much less is known. Awell-knownupper bound Rk(Pn) ⩽ kn follows easily by observing that any
k-colouring of the complete graph on kn vertices contains a colour class with at least (kn− 1) n2 edges
by the pigeonhole principle. A result of Erdős and Gallai [4] (Lemma 2) then implies that any graph on
kn vertices with this many edges contains a copy of Pn. Despite the simplicity of this observation, the
bound was only recently improved upon by Sárközy [17] who proved a stability version of Lemma 2
and showed that for k ⩾ 4 and n sufficiently large,

Rk(Pn) ⩽
(
k −

k
16k3 + 1

)
n .

In this paper we improve on the above result for all k ⩾ 4 reducing the upper bound on Rk(Pn) by
an amount that does not deteriorate as k grows. Our method is similar to that of [17] in that we also
use results of Erdős and Gallai [4], and Kopylov [12] to bound the number of edges in the densest two
colours. Our improvement comes from using more information about the densest colour in order to
obtain stronger bounds on the number of edges in the second densest.

Theorem 1. For k ⩾ 4 and all n ⩾ 64k,

Rk(Pn) ⩽
(
k −

1
4

+
1
2k

)
n .

If n is much larger we can in fact slightly improve on this bound and extend it to even cycles, see
Theorem 2.

Since Pn is a subgraph of Cn we have Rk(Pn) ⩽ Rk(Cn). It is believed that for fixed k and even
n the Ramsey numbers Rk(Pn) and Rk(Cn) are asymptotically equal. This is due to an application of
the regularity lemma and the notion of connected matchings pioneered by Łuczak in [13]. Progress
on these two problems therefore track each other closely. In the case of two colours Faudree and
Schelp [5], and independently Rosta [16] showed that R2(Cn) =

3n
2 +1 for even n ⩾ 6. For three colours,

Benevides and Skokan [1] proved that R3(Cn) = 2n for sufficiently large even n. For k ⩾ 4 colours, again
very little is known. Łuczak, Simonovits and Skokan [14] showed that for n even, Rk(Cn) ⩽ kn + o(n),
and recently Sárközy [17] improved this upper bound to

(
k −

k
16k3+1

)
n + o(n). Here we obtain a

strengthening of Theorem 1 for large n.

Theorem 2. For k ⩾ 4 and n even

Rk(Cn) ⩽
(
k −

1
4

)
n + o(n) .

It is interesting to note that odd cycles behave very differently in this context. Recently the second
author and Skokan [11] showed, via analytic methods, that for k ⩾ 4 and n odd and sufficiently large,
Rk(Cn) = 2k−1(n − 1) + 1. This resolved a conjecture of Bondy and Erdős [3] for large n.

Let us now briefly discuss lower bounds. Constructions based on finite affine planes (see [2]) show
that Rk(Pn) ⩾ (k−1)(n−1), when k−1 is a prime power and this lower bound is thought to be closer
to the truth than our upper bound. Yongqi, Yuansheng, Feng, and Bingxi [18] provide a construction
which shows that Rk(Cn) ⩾ (k− 1)(n− 2)+ 2 for any k and for even n. This construction can easily be
modified to give a lower bound on Rk(Pn) for any k and any n. We sketch this construction below.

To see that Rk(Pn) ⩾ 2(k−1)
(
⌊
n
2⌋ − 1

)
+1, consider a complete graph G on vertices {0, 1, . . . , 2k−

3} and for 1 ⩽ i ⩽ k − 1 colour the edges from vertex i to vertices i + 1, . . . , i + k − 2 and the edges
from vertex i+ k− 1 to vertices i+ k, . . . , i+ 2k− 3 (taken modulo 2k− 2) with colour ci. Then each
colour c1, . . . , ck−1 consists of two vertex-disjoint stars, each on k − 1 vertices. The remaining edges
are those of the form {j, j + k − 1} for j = 0, . . . , k − 2 which are coloured with the final colour ck.
The final colour forms a matching on k − 1 edges. Construct G′ by ‘blowing up’ each vertex i of G into
a set Vi of ⌊

n
2⌋ − 1 vertices and colour the edges within Vi with colour ck. Edges between sets Vi and

Vj in G′ are coloured with the same colour as the edge {i, j} in G.
There is nomonochromatic Pn in G′ because in colours c1, . . . , ck−1, components are bipartite with

smallest part size ⌊
n
2⌋ − 1, hence cannot contain a Pn. The components in colour ck have less than n
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