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a b s t r a c t

A problem by Diestel is to extend algebraic flow theory of finite
graphs to infinite graphswith ends. In order to pursue this problem,
we define an A-flow and non-elusive H-flow for arbitrary graphs
and for abelian Hausdorff topological groups H and compact sub-
sets A ⊆ H . We use these new definitions to extend several well-
known theorems of flows in finite graphs to infinite graphs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of flow is a main topic in graph theory and has various applications, as e.g. in electric
networks. Algebraic flow theory for finite graphs is well studied, see [10–12,14,17]. Butwhen it comes
to infinite graphs, much less is known. There are some results for electrical networks, see [1,7–9], but
not for group-valued flows. In fact Diestel’s problem [8, Problem4.27] to extend flow theory to infinite
graphs is still widely open. Here we are doing a first step toward its solution.

In Section 2, we give our main definition for flows in infinite graphs. Roughly speaking, a flow is a
map from the edge set of a graph to an abelian Hausdorff topological group such that the sum over all
edges in each finite cut is trivial. With this in mind, we shall extend the following theorems of finite
graphs:

• A finite graph has a non-elusive Z2-flow if and only if its degrees are even.
• A finite cubic graph has a non-elusive Z4-flow if and only if it is 3-edge-colorable.
• Every finite graph containing a Hamilton cycle has a non-elusive Z4-flow.

Our main tool to prove these results is Theorem 5, which offers some kind of compactness method
to extend results for finite graphs to infinite graphs of arbitrary degree, i.e. that need not be locally
finite. However it is worth remarking that not all theorems about flows in finite graphs have a

E-mail addresses: babak.miraftab@uni-hamburg.de (B. Miraftab), javad_mz123@yahoo.com (M.J. Moghadamzadeh).

http://dx.doi.org/10.1016/j.ejc.2016.11.009
0195-6698/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejc.2016.11.009
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2016.11.009&domain=pdf
mailto:babak.miraftab@uni-hamburg.de
mailto:javad_mz123@yahoo.com
http://dx.doi.org/10.1016/j.ejc.2016.11.009


B. Miraftab, M.J. Moghadamzadeh / European Journal of Combinatorics 62 (2017) 58–69 59

Fig. 1.1. The cubic bipartite graph without any non-elusive Z3-flow.

straightforward analogue in the infinite case: a finite cubic graph G has a non-elusive Z3-flow if and
only if G is bipartite, see [7, Proposition 6.4.2]. This is wrong for infinite graphs. Fig. 1.1 shows a cubic
bipartite graph without any non-elusive Z3-flow. Even further restrictions on the ends of that graph,
e.g. requiring them to have edge- or vertex-degree 3, fails in our example. (For more about the ends
of a graph and the topological setting, we refer readers to [8] and the references therein.)

In Section 4, we define the concept of tension for infinite graphs. Heuristically, a tension is a map
from the edge set of a graph to an abelian Hausdorff topological group such that the sumover all edges
in each finite cycle is trivial.

2. Preliminaries

We refer readers to [7], for the standard terminology and notations in this paper. A 1-way infinite
path is called a ray, a 2-way infinite path is a double ray, and the subrays of a ray or double ray are
its tails. Two rays in a graph G = (V , E) are equivalent if no finite set of vertices separates them. This
is an equivalence relation whose classes are the ends of G. Now, consider a locally finite graph G as
one-dimensional CW complex and compactify G by using the Freudenthal compactification method.
We denote this new topological space by |G|, for more on |G|, see [6] and [8]. Let D be a subset of
edges of G. We denote the closure of the point set ∪d∈Dd in |G| by D. A circle in |G| is a homeomorphic
image of the unit circle S1. Analogously an arc in |G| is a homeomorphic image of the closed interval
[0, 1]. We denote the cut space, finite cut space, topological cycle space and finite cycle space of a graph G
by B(G), Bfin(G), C(G) and Cfin(G), respectively. For more details about the equivalent definitions of
topological cycle space and its properties, see [7,8]. Note that B(G) is a vector space over Z2. We now
define the degree of an end of the graph G. The edge-degree of an end ω is the maximum number of
edge-disjoint rays in ω. In addition, let D be a subset of the set of edges of G. Then we say that an end
ω is D-even if there exists a finite vertex set S so that for all finite vertex sets S ′ ⊇ S it holds that the
maximal number of edge-disjoint arcs from S ′ to ω contained in D is even. If D is all the edges of G,
we remove D from the notation and we only say that ω has an even edge-degree. For more about the
degree of ends, see [3,4]. The following theorem describes the elements of the cycle space for locally
finite graphs. For the proof, see [7, Theorem 8.5.10] and [2, Theorem 5].

Theorem 1. Let G = (V , E) be a locally finite connected graph. Then an edge set D ⊆ E lies in C(G) if and
only if one of the following equivalent statements holds

(i) D meets every finite cut in an even number of edges.
(ii) Every vertex and every end of G is D-even.

Let us review some notions of the compactness method for locally finite graphs. Suppose that
v0, v1, . . . is an enumeration of V . We define Sn = v0, . . . , vn, for every n ∈ N. Put Gn for the minor of
G obtained by contracting each component of G \ Sn to a vertex. Note that we delete any loop, but we
keep multiple edges. The vertices of Gn outside Sn are called dummy vertices of Gn. Let G = (V , E) be
a graph. A directed edge is an ordered triple (e, x, y), where e = xy ∈ E. So we can present each edge
according to its direction by−→e = (e, x, y) or←−e = (e, y, x). We use

−→
E for the set of all oriented edges

of G. For two subsets X, Y (not necessarily disjoint) of V and a subset
−→
C of
−→
E , we define

−→
C (X, Y ) := {(e, x, y) ∈

−→
C | x ∈ X, y ∈ Y , x ̸= y}.
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