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a b s t r a c t

Computing the clique number and chromatic number of a general
graph are well-known NP-Hard problems. Codenotti et al., (1998)
showed that computing clique number and chromatic number
are both NP-Hard problems for the class of circulant graphs. We
show that computing clique number is NP-Hard for the class of
Cayley graphs for the groups Gn, where G is any fixed finite group
(e.g., cubelike graphs). We also show that computing chromatic
number cannot be done in polynomial time (under the assumption
NP ≠ ZPP) for the same class of graphs. Our presentation uses
free Cayley graphs. The proof combines free Cayley graphs with
quotient graphs and Goppa codes.

© 2017 Elsevier Ltd. All rights reserved.

In his celebrated 1972 paper [9], Karp established the NP-Completeness of 21 combinatorial
problems. Amongst those problems are the CLIQUE problem and the CHROMATIC NUMBER problem.
CLIQUE takes a graphX and an integer k anddecideswhetherX contains a clique of size k as a subgraph.
CHROMATICNUMBER takes a graphX and an integer k anddecideswhether there is a proper colouring
of X using at most k colours.

The clique number of a graph X is the size of the largest clique contained in X , and is denoted
by ω(X). Since deciding whether a general graph X contains a clique of size k is NP-Complete, the
problem of computing ω(X) is NP-Hard. The chromatic number of a graph X is the smallest integer
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k such that X has a proper k-colouring, and is denoted by χ(X). Again, since deciding whether a
general graph X can be coloured properly using at most k colours is NP-Complete, computing χ(X) is
NP-Hard.

Some of the graph theoretic problems in Karp’s list become easier when restricted to a subclass of
graphs. For instance, deciding whether a graph X has a subset of vertices with size k that covers all of
the edges of X is NP-Complete. However, if X is bipartite the Hungarian Algorithm finds a minimum
vertex cover of X in polynomial time. There are also subclasses of graphs for which the clique
number and chromatic number are computable in polynomial time. For example, planar graphs have
polynomial time computable clique numbers, and graphs with treewidth at most k have polynomial
time computable chromatic numbers [1].

In 1998, Codenotti, Gerace, and Vigna [5] proved that computing clique number, and chromatic
number, are NP-Hard when restricted to the class of circulant graphs (a circulant is a Cayley graph
for a group Zm). Since circulants are Cayley graphs, they are vertex transitive. One might hope, or
expect, that the assumption of vertex transitivity would confer some advantage when approaching
computational problems on graphs. Codenotti et al.’s results show that this is not the case, and also
raise the question of whether there are classes of Cayley graphs on which these problems become
easier.

Our main results in this paper are analogues of Codenotti et al.’s hardness results for a different
class of Cayley graphs. Our results apply to the class of Cayley graphs for the groups Gn, where G is
any fixed finite group. When G = Z2, this is the class of cubelike graphs. We show that computing
clique number for these graphs is an NP-Hard problem (Theorem 10.2). We also show that computing
chromatic number for these graphs cannot be done in polynomial time under the assumption that
NP ≠ ZPP (Theorem 11.3). (The assumption NP ≠ ZPP arises from our application of a result of
Håstad [7]. We refer the reader to the description of the class ZPP given there, as well as the claim that
the assumption ZPP ≠ NP is similar to the assumption P ≠ NP.)

We prove that computing clique number is NP-Hard by reducing computing the clique number of
a general graph X to computing the clique number of a Cayley graph on a group Gn. The key to this
reduction is providing a construction of a Cayley graph Γ from X so that |Γ | is polynomially bounded
in |X |, and so that ω(X) is easily computed from ω(Γ ). We begin with a construction used by Babai
and Sós [2] to embed graphs in Cayley graphs. This construction leads naturally to free Cayley graphs.
We construct a free Cayley graph G(X) from X so that the cliques in X can be recovered from the
cliques in G(X). To complete our construction we will quotient G(X) over a suitably chosen linear
code. Specifically, we will give a Goppa code that satisfies the desired properties.

To prove that computing chromatic number cannot be done in polynomial time we use a simi-
lar strategy to Codenotti et al. In [5], the chromatic number result is proven by reducing comput-
ing clique number for general graphs to computing chromatic number for circulant graphs. This
reduction does not work for the Cayley graphs we consider. However, we adapt this approach to
show that if chromatic number can be computed in polynomial time for Cayley graphs for the
groups Gn, then for any graph X , the clique number of X can be approximated to within a con-
stant factor in polynomial time. This completes the proof by an inapproximability result of Håstad
[7].

Constructing our reductions using free Cayley graphs situates them in a more general framework.
Free Cayley graphs are relatively new and unstudied objects (they appear in a recent paper by
Beaudou, Naserasr and Tardif [3]). Our results rely on the clique structure of free Cayley graphs, and
provide a new application of these objects.

This paper has roughly three parts. The first part gives the background necessary for our results
and their proofs. Sections 1 and 2 contain some basic graph theory and coding theory. Sections 3–5
introduce free Cayley graphs. The second part contains the intermediate results needed for our re-
ductions, and the proofs of our main results. Section 6 develops the relationship between cliques in a
graph X and cliques in the free Cayley graph G(X). Sections 7 and 8 focus on the groups Zp for p prime.
Themain results of this paper are given in Sections 10 and 11. The last part consists of some additional
observations. We consider how our construction can be applied to embeddings in Section 12, and we
take a closer look at free Cayley graphs in Section 13.
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