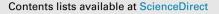
European Journal of Combinatorics 62 (2017) 183-196



Set families with a forbidden pattern

Ilan Karpas^a, Eoin Long^b

^a The Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel ^b School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

ARTICLE INFO

Article history: Received 16 January 2016 Accepted 15 November 2016 Available online 16 January 2017

ABSTRACT

A balanced pattern of order 2d is an element $P \in \{+, -\}^{2d}$, where both signs appear d times. Two sets $A, B \subset [n]$ form a P-pattern, which we denote by pat(A, B) = P, if $A \triangle B = \{j_1, \ldots, j_{2d}\}$ with $1 \le p$ $j_1 < \cdots < j_{2d} \le n \text{ and } \{i \in [2d] : P_i = +\} = \{i \in [2d] : j_i \in A \setminus B\}.$ We say $\mathcal{A} \subset \mathcal{P}[n]$ is *P*-free if pat(*A*, *B*) \neq *P* for all *A*, *B* \in \mathcal{A} . We consider the following extremal question: how large can a family $\mathcal{A} \subset \mathcal{P}[n]$ be if \mathcal{A} is *P*-free?

We prove a number of results on the sizes of such families. In particular, we show that for some fixed c > 0, if P is a *d*-balanced pattern with $d < c \log \log n$ then $|\mathcal{A}| = o(2^n)$. We then give stronger bounds in the cases when (i) P consists of d+signs, followed by d – signs and (ii) P consists of alternating signs. In both cases, if $d = o(\sqrt{n})$ then $|\mathcal{A}| = o(2^n)$. In the case of (i), this is tight.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A central goal in extremal set theory is to understand how large a set family can be subject to some restriction on the intersections of its elements. Given $\mathcal{L} \subset \mathbb{N} \cup \{0\}$, we say that a set family \mathcal{A} is \mathcal{L} -intersecting if $|A \cap B| \in \mathcal{L}$ for all distinct $A, B \in \mathcal{A}$. Taking $\mathcal{L}_t = \{s \in \mathbb{N} : s \geq t\}$, a fundamental theorem of Erdős, Ko and Rado [6] shows that \mathcal{L}_t -intersecting families $\mathcal{A} \subset {[n] \choose k}$ satisfy $|\mathcal{A}| \leq {n-t \choose k-t}$, provided $n \geq n_0(k, t)$. Another important theorem due to Frankl and Füredi [8] shows that if $\mathcal{L}_{\ell,\ell'} := \{s < \ell \text{ or } s \ge k - \ell'\}$, then any $\mathcal{L}_{\ell,\ell'}$ -intersecting family $\mathcal{A} \subset {[n] \choose k}$ satisfies

http://dx.doi.org/10.1016/j.ejc.2016.11.005

European Journal of Combinatorics

E-mail addresses: ilan.karpas@mail.huji.ac.il (I. Karpas), eoinlong@post.tau.ac.il (E. Long).

^{0195-6698/© 2016} Elsevier Ltd. All rights reserved.

 $|A| \leq cn^{\max(\ell,\ell')}$, for some constant *c* depending on *k*, ℓ and ℓ' . See [2,3,7,10] for an overview of this extensive topic.

Here we are concerned with understanding the effect of restricting the *pattern* formed between elements of a set family. A *difference pattern* or *pattern* of order *t* is an element $P \in \{+, -\}^t$. Given such a pattern *P*, let $S_+(P) = \{i \in [t] : P_i = +\} \subset [t]$ and $s_+(P) = |S_+(P)|$. Define $S_-(P)$ and $s_-(P)$ analogously. Two sets *A*, $B \subset [n]$ form a *difference pattern P* if:

(i) $A \triangle B = \{j_1, \ldots, j_t\}$ with $j_1 < \cdots < j_t$, and

(ii)
$$\{i \in [t] : P_i = +\} = \{i \in [t] : j_i \in A \setminus B\}.$$

We denote this by writing pat(A, B) = P. A family of subsets $A \subset \mathcal{P}[n]$ is *P*-free if $pat(A, B) \neq P$ for all distinct $A, B \in A$. In this paper we consider the following natural question: given a pattern *P*, how large can a family $A \subset \mathcal{P}[n]$ be if it is *P*-free?

First note the following simple observation. If $s_+(P) \neq s_-(P)$ then large *P*-free families exist. Indeed, if $|s_+(P) - s_-(P)| = m > 0$ then the following families are *P*-free:

$$\mathcal{B}_1 = \{A \subset [n] : |A| \in [0, m-1] \mod 2m\}; \qquad \mathcal{B}_2 = \{A \subset [n] : |A| \in [m, 2m-1] \mod 2m\}.$$

Clearly either $|\mathcal{B}_1| \ge 2^{n-1}$ or $|\mathcal{B}_2| \ge 2^{n-1}$. We will therefore focus on the case when $s_+(P) = s_-(P) = d$. We say that such patterns are *d*-balanced. For a balanced pattern *P* it is only possible that pat(*A*, *B*) = *P* if |A| = |B|. Thus, our question on balanced patterns essentially reduces to a question for uniform families. Given $0 \le k \le n$, define

$$f(n, k, P) := \max\left\{ |\mathcal{A}| : P \text{-free families } \mathcal{A} \subset \binom{[n]}{k} \right\}.$$

Let $f(n, k, d) = \max\{f(n, k, P) : P \text{ is } d\text{-balanced}\}$. We will also write $\delta(n, k, P)$ and $\delta(n, k, d)$ for the corresponding extremal densities, i.e. $\delta(n, k, P) := f(n, k, P)/{\binom{n}{k}}$, and $\delta(n, k, d) := f(n, k, d)/{\binom{n}{k}}$. Note also that if $\mathcal{A} \subset {\binom{[n]}{k}}$ is *P*-free then the family $\mathcal{A}^c = \{[n] \setminus A : A \in \mathcal{A}\} \subset {\binom{[n]}{n-k}}$ is also *P*-free. Therefore f(n, k, P) = f(n, n-k, P) and it suffices to bound f(n, k, P) for $k \le n/2$.

Our first aim is to prove a density result for *d*-balanced patterns of small order. That is, we will show that for fixed *d*, any sequence of integers $\{k_n\}_{n=1}^{\infty}$ tending to infinity with *n* with $k_n \leq n/2$ satisfies $\lim_{n\to\infty} \delta(n, k_n, d) = 0$. The condition that *k* is not fixed and tends to infinity with *n* will be crucial. This is different from the case in the Frankl–Füredi Theorem, which tells us that we can take some fixed $k \geq 2d - 1$, $\ell = k - d$ and $\ell' = d - 1$, and if $A \subset {n \choose k}$ with $|A| = \omega(n^{k-d})$ then there are $A, B \in A$ with $|A \triangle B| = 2d$, i.e. A and B form a P-pattern for some d-balanced pattern P. Indeed, take any fixed k := k(d), and consider the family $A_0 \subset {n \choose k}$ given by

$$\mathcal{A}_0 = \left\{ A \subset [n] : \left| A \cap \left(\frac{(i-1)n}{k}, \frac{in}{k} \right] \right| = 1 \text{ for all } i \in [k] \right\}.$$

Then $|A_0| \ge c_k n^k$ for some absolute constant $c_k > 0$, but it is easily seen that A_0 does not contain the pattern + + -. Therefore, there does not exist a density theorem for *d*-balanced patterns in subsets of $\binom{[n]}{k}$ with fixed *k*, as in the Frankl–Füredi theorem.

Our first result shows that such a density theorem does hold for k growing with n.

Theorem 1. Given $d, k, n \in \mathbb{N}$ with $2k \leq n$ and taking $a_d = (8d)^{5d}$ and $c_d = 6d8^{-d}$ we have

$$\delta(n, k, d) \le a_d k^{-c_d}.$$

By our discussion above for fixed k we see that Theorem 1 is in a sense a 'high-dimensional' result. Also note that Theorem 1 shows there is a constant c > 0 with the property that if P is a d-balanced pattern with $d \le c \log \log n$ and $\mathcal{A} \subset \mathcal{P}[n]$ which is P-free, then $|\mathcal{A}| = o(2^n)$.

Let IP(*d*) denote the *d*-balanced pattern consisting of *d* plus signs, followed by *d* minus signs. We refer to these as *interval patterns*. Given the obstruction of IP(2) above, it is natural to ask for bounds on f(n, k, IP(d)).

Download English Version:

https://daneshyari.com/en/article/5777433

Download Persian Version:

https://daneshyari.com/article/5777433

Daneshyari.com