Set families with a forbidden pattern

Ilan Karpas ${ }^{\text {a }}$, Eoin Long ${ }^{\text {b }}$
${ }^{\text {a }}$ The Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
${ }^{\mathrm{b}}$ School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

A R T I CLE INFO

Article history:

Received 16 January 2016
Accepted 15 November 2016
Available online 16 January 2017

Abstract

A balanced pattern of order $2 d$ is an element $P \in\{+,-\}^{2 d}$, where both signs appear d times. Two sets $A, B \subset[n]$ form a P-pattern, which we denote by pat $(A, B)=P$, if $A \triangle B=\left\{j_{1}, \ldots, j_{2 d}\right\}$ with $1 \leq$ $j_{1}<\cdots<j_{2 d} \leq n$ and $\left\{i \in[2 d]: P_{i}=+\right\}=\left\{i \in[2 d]: j_{i} \in A \backslash B\right\}$. We say $\mathcal{A} \subset \mathcal{P}[n]$ is P-free if $\operatorname{pat}(A, B) \neq P$ for all $A, B \in \mathcal{A}$. We consider the following extremal question: how large can a family $\mathcal{A} \subset \mathscr{P}[n]$ be if \mathscr{A} is P-free?

We prove a number of results on the sizes of such families. In particular, we show that for some fixed $c>0$, if P is a d-balanced pattern with $d<c \log \log n$ then $|\mathcal{A}|=o\left(2^{n}\right)$. We then give stronger bounds in the cases when (i) P consists of $d+$ signs, followed by $d-$ signs and (ii) P consists of alternating signs. In both cases, if $d=o(\sqrt{n})$ then $|\mathcal{A}|=o\left(2^{n}\right)$. In the case of (i), this is tight.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A central goal in extremal set theory is to understand how large a set family can be subject to some restriction on the intersections of its elements. Given $\mathcal{L} \subset \mathbb{N} \cup\{0\}$, we say that a set family \mathcal{A} is \mathcal{L}-intersecting if $|A \cap B| \in \mathcal{L}$ for all distinct $A, B \in \mathcal{A}$. Taking $\mathcal{L}_{t}=\{s \in \mathbb{N}: s \geq t\}$, a fundamental theorem of Erdős, Ko and Rado [6] shows that \mathcal{L}_{t}-intersecting families $\mathcal{A} \subset\binom{[n]}{k}$ satisfy $|\mathcal{A}| \leq\binom{ n-t}{k-t}$, provided $n \geq n_{0}(k, t)$. Another important theorem due to Frankl and Füredi [8] shows that if $\mathcal{L}_{\ell, \ell^{\prime}}:=\left\{s<\ell\right.$ or $\left.s \geq k-\ell^{\prime}\right\}$, then any $\mathcal{L}_{\ell, \ell^{\prime}}$-intersecting family $\mathscr{A} \subset\binom{[n]}{k}$ satisfies

[^0]$|\mathcal{A}| \leq c n^{\max \left(\ell, \ell^{\prime}\right)}$, for some constant c depending on k, ℓ and ℓ^{\prime}. See [2,3,7,10] for an overview of this extensive topic.

Here we are concerned with understanding the effect of restricting the pattern formed between elements of a set family. A difference pattern or pattern of order t is an element $P \in\{+,-\}^{t}$. Given such a pattern P, let $S_{+}(P)=\left\{i \in[t]: P_{i}=+\right\} \subset[t]$ and $s_{+}(P)=\left|S_{+}(P)\right|$. Define $S_{-}(P)$ and $s_{-}(P)$ analogously. Two sets $A, B \subset[n]$ form a difference pattern P if:
(i) $A \triangle B=\left\{j_{1}, \ldots, j_{t}\right\}$ with $j_{1}<\cdots<j_{t}$, and
(ii) $\left\{i \in[t]: P_{i}=+\right\}=\left\{i \in[t]: j_{i} \in A \backslash B\right\}$.

We denote this by writing $\operatorname{pat}(A, B)=P$. A family of subsets $\mathcal{A} \subset \mathcal{P}[n]$ is P-free if $\operatorname{pat}(A, B) \neq P$ for all distinct $A, B \in \mathcal{A}$. In this paper we consider the following natural question: given a pattern P, how large can a family $\mathcal{A} \subset \mathcal{P}[n]$ be if it is P-free?

First note the following simple observation. If $s_{+}(P) \neq s_{-}(P)$ then large P-free families exist. Indeed, if $\left|s_{+}(P)-s_{-}(P)\right|=m>0$ then the following families are P-free:

$$
\mathscr{B}_{1}=\{A \subset[n]:|A| \in[0, m-1] \bmod 2 m\} ; \quad \mathscr{B}_{2}=\{A \subset[n]:|A| \in[m, 2 m-1] \bmod 2 m\} .
$$

Clearly either $\left|\mathcal{B}_{1}\right| \geq 2^{n-1}$ or $\left|\mathcal{B}_{2}\right| \geq 2^{n-1}$. We will therefore focus on the case when $s_{+}(P)=$ $s_{-}(P)=d$. We say that such patterns are d-balanced. For a balanced pattern P it is only possible that $\operatorname{pat}(A, B)=P$ if $|A|=|B|$. Thus, our question on balanced patterns essentially reduces to a question for uniform families. Given $0 \leq k \leq n$, define

$$
f(n, k, P):=\max \left\{|\mathcal{A}|: P \text {-free families } \mathcal{A} \subset\binom{[n]}{k}\right\} .
$$

Let $f(n, k, d)=\max \{f(n, k, P): P$ is d-balanced $\}$. We will also write $\delta(n, k, P)$ and $\delta(n, k, d)$ for the corresponding extremal densities, i.e. $\delta(n, k, P):=f(n, k, P) /\binom{n}{k}$, and $\delta(n, k, d):=f(n, k, d) /\binom{n}{k}$. Note also that if $\mathcal{A} \subset\binom{[n]}{k}$ is P-free then the family $\mathcal{A}^{c}=\{[n] \backslash A: A \in \mathcal{A}\} \subset\binom{[n]}{n-k}$ is also P-free. Therefore $f(n, k, P)=f(n, n-k, P)$ and it suffices to bound $f(n, k, P)$ for $k \leq n / 2$.

Our first aim is to prove a density result for d-balanced patterns of small order. That is, we will show that for fixed d, any sequence of integers $\left\{k_{n}\right\}_{n=1}^{\infty}$ tending to infinity with n with $k_{n} \leq n / 2$ satisfies $\lim _{n \rightarrow \infty} \delta\left(n, k_{n}, d\right)=0$. The condition that k is not fixed and tends to infinity with n will be crucial. This is different from the case in the Frankl-Füredi Theorem, which tells us that we can take some fixed $k \geq 2 d-1, \ell=k-d$ and $\ell^{\prime}=d-1$, and if $\mathcal{A} \subset\binom{[n]}{k}$ with $|\mathcal{A}|=\omega\left(n^{k-d}\right)$ then there are $A, B \in \mathcal{A}$ with $|A \triangle B|=2 d$, i.e. A and B form a P-pattern for some d-balanced pattern P. Indeed, take any fixed $k:=k(d)$, and consider the family $\mathcal{A}_{0} \subset\binom{[n]}{k}$ given by

$$
\mathcal{A}_{0}=\left\{A \subset[n]:\left|A \cap\left(\frac{(i-1) n}{k}, \frac{i n}{k}\right]\right|=1 \text { for all } i \in[k]\right\} .
$$

Then $\left|\mathcal{A}_{0}\right| \geq c_{k} n^{k}$ for some absolute constant $c_{k}>0$, but it is easily seen that \mathscr{A}_{0} does not contain the pattern ++-- . Therefore, there does not exist a density theorem for d-balanced patterns in subsets of $\binom{[n]}{k}$ with fixed k, as in the Frankl-Füredi theorem.

Our first result shows that such a density theorem does hold for k growing with n.
Theorem 1. Given $d, k, n \in \mathbb{N}$ with $2 k \leq n$ and taking $a_{d}=(8 d)^{5 d}$ and $c_{d}=6 d 8^{-d}$ we have

$$
\delta(n, k, d) \leq a_{d} k^{-c_{d}} .
$$

By our discussion above for fixed k we see that Theorem 1 is in a sense a 'high-dimensional' result. Also note that Theorem 1 shows there is a constant $c>0$ with the property that if P is a d-balanced pattern with $d \leq c \log \log n$ and $\mathcal{A} \subset \mathcal{P}[n]$ which is P-free, then $|\mathcal{A}|=o\left(2^{n}\right)$.

Let $\operatorname{IP}(d)$ denote the d-balanced pattern consisting of d plus signs, followed by d minus signs. We refer to these as interval patterns. Given the obstruction of $\operatorname{IP}(2)$ above, it is natural to ask for bounds on $f(n, k, \operatorname{IP}(d))$.

Download Persian Version:
https://daneshyari.com/article/5777433

Daneshyari.com

[^0]: E-mail addresses: ilan.karpas@mail.huji.ac.il (I. Karpas), eoinlong@post.tau.ac.il (E. Long).
 http://dx.doi.org/10.1016/j.ejc.2016.11.005
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

