

A size-sensitive inequality for cross-intersecting families

Peter Frankl^a, Andrey Kupavskii^{b,c}

^a Rényi Institute, Budapest, Hungary

^b Moscow Institute of Physics and Technology, Russia

^c Ecole Polytechnique Fédérale de Lausanne, Switzerland

ARTICLE INFO

Article history: Received 11 March 2016 Accepted 17 January 2017

ABSTRACT

Two families \mathcal{A} and \mathcal{B} of *k*-subsets of an *n*-set are called crossintersecting if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}, B \in \mathcal{B}$. Strengthening the classical Erdős–Ko–Rado theorem, Pyber proved that $|\mathcal{A}||\mathcal{B}| \leq {\binom{n-1}{k-1}}^2$ holds for $n \geq 2k$. In the present paper we sharpen this inequality. We prove that assuming $|\mathcal{B}| \geq {\binom{n-1}{k-1}} + {\binom{n-i}{k-i+1}}$ for some $3 \leq i \leq k+1$ the stronger inequality

$$\begin{aligned} |\mathcal{A}||\mathcal{B}| &\leq \left(\binom{n-1}{k-1} + \binom{n-i}{k-i+1} \right) \\ &\times \left(\binom{n-1}{k-1} - \binom{n-i}{k-1} \right) \end{aligned}$$

holds. These inequalities are best possible. We also present a new short proof of Pyber's inequality and a short computation-free proof of an inequality due to Frankl and Tokushige (1992).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $[n] = \{1, ..., n\}$ and $\binom{[n]}{k}$ be the family of all *k*-subsets of [n] for $n \ge k \ge 0$. For a family $\mathcal{F} \subset \binom{[n]}{k}$ let \mathcal{F}^c be the family of complements, i.e., $\mathcal{F}^c = \{[n] - F : F \in \mathcal{F}\}$. Obviously, $\mathcal{F}^c \subset \binom{[n]}{n-k}$ holds.

http://dx.doi.org/10.1016/j.ejc.2017.01.004

E-mail addresses: peter.frankl@gmail.com (P. Frankl), kupavskii@yandex.ru (A. Kupavskii).

^{0195-6698/© 2017} Elsevier Ltd. All rights reserved.

Two families $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}}$ are said to be *cross-intersecting* if $A \cap B \neq \emptyset$ holds for all $A \in \mathcal{A}$, $B \in \mathcal{B}$. To avoid trivialities we assume $n \geq 2k$. Analogously, $\mathcal{C}, \mathcal{D} \subset {\binom{[n]}{l}}$ are called *cross-union* if $C \cup D \neq [n]$ holds for all $C \in \mathcal{C}, D \in \mathcal{D}$. Here we assume $n \leq 2l$ in general. Note that \mathcal{A}, \mathcal{B} are cross-intersecting iff $\mathcal{A}^c, \mathcal{B}^c$ are cross-union.

In order to state one of the most fundamental theorems in *extremal set theory*, let us say that $\mathcal{F} \subset {[n] \choose k}$ is *intersecting* if $F \cap F' \neq \emptyset$ for all $F, F' \in \mathcal{F}$.

Theorem (Erdős–Ko–Rado Theorem [2]). If $\mathcal{F} \subset {\binom{[n]}{k}}$ is intersecting and $n \ge 2k > 0$ then

$$|\mathcal{F}| \le \binom{n-1}{k-1} \text{ holds.}$$
(1)

Hilton and Milner [7] proved in a stronger form that for n > 2k the only way to achieve equality in (1) is to take all k-subsets containing some fixed element of [n].

If \mathcal{F} is intersecting then $\mathcal{A} = \mathcal{F}$, $\mathcal{B} = \mathcal{F}$ are cross-intersecting. Therefore the following result is a strengthening of (1).

Theorem (Pyber's Inequality [14]). Suppose that $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}}$ are cross-intersecting and $n \geq 2k$. Then

$$|\mathcal{A}| |\mathcal{B}| \le {\binom{n-1}{k-1}}^2 \text{ holds.}$$
(2)

Let us mention that the notion of cross-intersection is not just a natural extension of the notion of intersecting for two families, but it is also a very useful tool for proving results for *one* family. As a matter of fact, it was already used in the paper of Hilton and Milner [7]. This explains the interest in two-family versions of intersection theorems (cf. e.g. [1,12,15]).

The object of this paper is two-fold. First we provide a very short proof of (2). Then we use the ideas of this proof and some counting based on the Kruskal–Katona Theorem [10,8] to obtain the following sharper, best possible bounds.

Example 1. Let *i* be an integer and define
$$\mathcal{B}_i = \{B \in {\binom{[n]}{k}} : 1 \in B\} \cup \{B \in {\binom{[n]}{k}} : 1 \notin B, [2, i] \subset B\},\$$

 $\mathcal{A}_i = \{A \in {\binom{[n]}{k}} : 1 \in A, [2, i] \cap A \neq \emptyset\}.$ Note that $\mathcal{A}_i, \mathcal{B}_i$ are cross intersecting with
 $|\mathcal{A}_i| = {\binom{n-1}{k-1}} - {\binom{n-i}{k-1}}, \qquad |\mathcal{B}_i| = {\binom{n-1}{k-1}} + {\binom{n-i}{k-i+1}}.$

$$(k-1)$$
 $(k-1)$ $(k-1)$ $(k-1)$ $(k-1+1)$
The inequalities (3) and (4) given below show that the pair (A_i, B_i) is extremal in the correspondence range.

Theorem 1. Let $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}}$ be cross-intersecting, n > 2k > 0 and suppose $|\mathcal{A}| \le {\binom{n-1}{k-1}} \le |\mathcal{B}|$ and $\bigcap_{B \in \mathcal{B}} B = \emptyset$. Then

$$|\mathcal{A}| |\mathcal{B}| \le \left(\binom{n-1}{k-1} + 1 \right) \left(\binom{n-1}{k-1} - \binom{n-k-1}{k-1} \right) \text{ holds.}$$

$$(3)$$

nding

Theorem 2. Let $\mathcal{A}, \mathcal{B} \subset {\binom{[n]}{k}}$ be cross-intersecting, $n \geq 2k > 0$ and suppose that $|\mathcal{B}| \geq {\binom{n-1}{k-1}} + {\binom{n-i}{k-i+1}}$ holds for some $3 \leq i \leq k+1$. Then

$$|\mathcal{A}| |\mathcal{B}| \le \left(\binom{n-1}{k-1} + \binom{n-i}{k-i+1} \right) \left(\binom{n-1}{k-1} - \binom{n-i}{k-1} \right).$$

$$(4)$$

Download English Version:

https://daneshyari.com/en/article/5777439

Download Persian Version:

https://daneshyari.com/article/5777439

Daneshyari.com