A size-sensitive inequality for cross-intersecting families

Peter Frankl ${ }^{\text {a }}$, Andrey Kupavskii ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Rényi Institute, Budapest, Hungary
${ }^{\mathrm{b}}$ Moscow Institute of Physics and Technology, Russia
${ }^{\text {c }}$ Ecole Polytechnique Fédérale de Lausanne, Switzerland

ARTICLE INFO

Article history:

Received 11 March 2016
Accepted 17 January 2017

A B S TRACT

Two families \mathcal{A} and \mathscr{B} of k-subsets of an n-set are called crossintersecting if $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}, B \in \mathcal{B}$. Strengthening the classical Erdős-Ko-Rado theorem, Pyber proved that $|\mathcal{A}||\mathcal{B}| \leq$ $\binom{n-1}{k-1}^{2}$ holds for $n \geq 2 k$. In the present paper we sharpen this inequality. We prove that assuming $|\mathscr{B}| \geq\binom{ n-1}{k-1}+\binom{n-i}{k-i+1}$ for some $3 \leq i \leq k+1$ the stronger inequality

$$
\begin{aligned}
|\mathscr{A}||\mathscr{B}| \leq & \left(\binom{n-1}{k-1}+\binom{n-i}{k-i+1}\right) \\
& \times\left(\binom{n-1}{k-1}-\binom{n-i}{k-1}\right)
\end{aligned}
$$

holds. These inequalities are best possible. We also present a new short proof of Pyber's inequality and a short computation-free proof of an inequality due to Frankl and Tokushige (1992).
© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $[n]=\{1, \ldots, n\}$ and $\binom{[n]}{k}$ be the family of all k-subsets of $[n]$ for $n \geq k \geq 0$. For a family $\mathcal{F} \subset\binom{[n]}{k}$ let \mathcal{F}^{c} be the family of complements, i.e., $\mathcal{F}^{c}=\{[n]-F: F \in \mathcal{F}\}$. Obviously, $\mathcal{F}^{c} \subset\binom{[n]}{n-k}$ holds.

[^0]Two families $\mathcal{A}, \mathcal{B} \subset\binom{[n]}{k}$ are said to be cross-intersecting if $A \cap B \neq \emptyset$ holds for all $A \in \mathcal{A}$, $B \in \mathscr{B}$. To avoid trivialities we assume $n \geq 2 k$. Analogously, $\mathcal{C}, \mathcal{D} \subset\binom{[n]}{l}$ are called cross-union if $C \cup D \neq[n]$ holds for all $C \in \mathcal{C}, D \in \mathscr{D}$. Here we assume $n \leq 2 l$ in general. Note that $\mathscr{A}, \mathfrak{B}$ are cross-intersecting iff $\mathcal{A}^{c}, \mathscr{B}^{c}$ are cross-union.

In order to state one of the most fundamental theorems in extremal set theory, let us say that $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting if $F \cap F^{\prime} \neq \emptyset$ for all $F, F^{\prime} \in \mathcal{F}$.
Theorem (Erdős-Ko-Rado Theorem [2]). If $\mathcal{F} \subset\binom{[n]}{k}$ is intersecting and $n \geq 2 k>0$ then

$$
\begin{equation*}
|\mathcal{F}| \leq\binom{ n-1}{k-1} \text { holds. } \tag{1}
\end{equation*}
$$

Hilton and Milner [7] proved in a stronger form that for $n>2 k$ the only way to achieve equality in (1) is to take all k-subsets containing some fixed element of [n].

If \mathcal{F} is intersecting then $\mathcal{A}=\mathcal{F}, \mathscr{B}=\mathcal{F}$ are cross-intersecting. Therefore the following result is a strengthening of (1).
Theorem (Pyber's Inequality [14]). Suppose that $\mathcal{A}, \mathscr{B} \subset\binom{[n]}{k}$ are cross-intersecting and $n \geq 2 k$. Then

$$
\begin{equation*}
|\mathcal{A}||\mathcal{B}| \leq\binom{ n-1}{k-1}^{2} \text { holds. } \tag{2}
\end{equation*}
$$

Let us mention that the notion of cross-intersection is not just a natural extension of the notion of intersecting for two families, but it is also a very useful tool for proving results for one family. As a matter of fact, it was already used in the paper of Hilton and Milner [7]. This explains the interest in two-family versions of intersection theorems (cf. e.g. [1,12,15]).

The object of this paper is two-fold. First we provide a very short proof of (2). Then we use the ideas of this proof and some counting based on the Kruskal-Katona Theorem [10,8] to obtain the following sharper, best possible bounds.

Example 1. Let i be an integer and define $\mathscr{B}_{i}=\left\{B \in\binom{[n]}{k}: 1 \in B\right\} \cup\left\{B \in\binom{[n]}{k}: 1 \notin B,[2, i] \subset B\right\}$, $\mathcal{A}_{i}=\left\{A \in\binom{[n]}{k}: 1 \in A,[2, i] \cap A \neq \emptyset\right\}$. Note that $\mathscr{A}_{i}, \mathscr{B}_{i}$ are cross intersecting with

$$
\left|\mathcal{A}_{i}\right|=\binom{n-1}{k-1}-\binom{n-i}{k-1}, \quad\left|\mathscr{B}_{i}\right|=\binom{n-1}{k-1}+\binom{n-i}{k-i+1} .
$$

The inequalities (3) and (4) given below show that the pair $\left(\mathscr{A}_{i}, \mathscr{B}_{i}\right)$ is extremal in the corresponding range.

Theorem 1. Let $\mathcal{A}, \mathscr{B} \subset\binom{[n]}{k}$ be cross-intersecting, $n>2 k>0$ and suppose $|\mathcal{A}| \leq\binom{ n-1}{k-1} \leq|\mathcal{B}|$ and $\bigcap_{B \in \mathcal{B}} B=\emptyset$. Then

$$
\begin{equation*}
|\mathcal{A}||\mathscr{B}| \leq\left(\binom{n-1}{k-1}+1\right)\left(\binom{n-1}{k-1}-\binom{n-k-1}{k-1}\right) \text { holds. } \tag{3}
\end{equation*}
$$

Theorem 2. Let $\mathcal{A}, \mathfrak{B} \subset\binom{[n]}{k}$ be cross-intersecting, $n \geq 2 k>0$ and suppose that $|\mathfrak{B}| \geq\binom{ n-1}{k-1}+$ $\binom{n-i}{k-i+1}$ holds for some $3 \leq i \leq k+1$. Then

$$
\begin{equation*}
|\mathcal{A}||\mathcal{B}| \leq\left(\binom{n-1}{k-1}+\binom{n-i}{k-i+1}\right)\left(\binom{n-1}{k-1}-\binom{n-i}{k-1}\right) . \tag{4}
\end{equation*}
$$

Download Persian Version:
https://daneshyari.com/article/5777439

Daneshyari.com

[^0]: E-mail addresses: peter.frankl@gmail.com (P. Frankl), kupavskii@yandex.ru (A. Kupavskii).
 http://dx.doi.org/10.1016/j.ejc.2017.01.004
 0195-6698/© 2017 Elsevier Ltd. All rights reserved.

