

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

A crystal embedding into Lusztig data of type $A^{\,\Rightarrow}$

Jae-Hoon Kwon

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

ARTICLE INFO

Article history: Received 24 June 2016 Available online xxxx

Keywords: Quantum groups Crystal graphs Lusztig data Young tableaux

ABSTRACT

Let **i** be a reduced expression of the longest element in the Weyl group of type A, which is adapted to a Dynkin quiver with a single sink. We present a simple description of the crystal embedding of Young tableaux of arbitrary shape into **i**-Lusztig data, which also gives an algorithm for the transition matrix between Lusztig data associated to reduced expressions adapted to quivers with a single sink.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $U_q(\mathfrak{g})$ be the quantized enveloping algebra associated to a symmetrizable Kac– Moody algebra \mathfrak{g} . The negative part of $U_q(\mathfrak{g})$ has a basis called a canonical basis [16] or lower global crystal basis [7], which has many fundamental properties. The canonical basis forms a colored oriented graph $B(\infty)$, called a crystal, with respect to Kashiwara operators. The crystal $B(\infty)$ plays an important role in the study of combinatorial aspects of $U_q(\mathfrak{g})$ -modules together with its subgraph $B(\lambda)$ associated to any integrable highest weight module $V(\lambda)$ with highest weight λ .

E-mail address: jaehoonkw@snu.ac.kr.

 $^{^{\,\}pm}$ This work was supported by Research Resettlement Fund for the new faculty of Seoul National University.

Suppose that \mathfrak{g} is a finite-dimensional semisimple Lie algebra with the index set I of simple roots. Let $\mathbf{i} = (i_1, \ldots, i_N)$ be a sequence of indices in I corresponding to a reduced expression of the longest element in the Weyl group of \mathfrak{g} . A PBW basis associated to \mathbf{i} is a basis of the negative part of $U_q(\mathfrak{g})$ [17], which is parametrized by the set $\mathcal{B}_{\mathbf{i}}$ of N-tuple of non-negative integers. One can identify $B(\infty)$ with $\mathcal{B}_{\mathbf{i}}$ since the associated PBW basis coincides with the canonical basis at q = 0 [21]. We call an element in $\mathcal{B}_{\mathbf{i}}$ an \mathbf{i} -Lusztig datum or Lusztig parametrization associated to \mathbf{i} .

Consider the map

$$\psi_{\lambda}^{\mathbf{i}}: B(\lambda) \otimes T_{-\lambda} \hookrightarrow \mathcal{B}_{\mathbf{i}} , \qquad (1.1)$$

given by the i-Lusztig datum of $b \in B(\lambda)$ under the embedding of $B(\lambda) \otimes T_{-\lambda}$ into $B(\infty)$, where $T_{-\lambda} = \{t_{-\lambda}\}$ is an abstract crystal with $\operatorname{wt}(t_{-\lambda}) = -\lambda$ and $\varphi_i(t_{-\lambda}) = -\infty$ for $i \in I$. In this paper, we give a simple combinatorial description of (1.1) when $\mathfrak{g} = \mathfrak{gl}_n$ and i is a reduced expression adapted to a Dynkin quiver of type A_{n-1} with a single sink (Theorem 5.4). It is well-known that when i is adapted to a quiver with one direction, for example $\mathbf{i} = \mathbf{i}_0 = (1, 2, 1, 3, 2, 1, \dots, n - 1, \dots, 1)$, the \mathbf{i}_0 -Lusztig datum of a Young tableaux is simply given by counting the number of occurrences of each entry in each row. But the i-Lusztig datum for arbitrary i is not easy to describe in general, and one may apply a sequence of Lusztig's transformations [17] or the formula for a transition map $R_{\mathbf{i}_0}^{\mathbf{i}} : \mathcal{B}_{\mathbf{i}_0} \to \mathcal{B}_{\mathbf{i}}$ by Berenstein–Fomin–Zelevinsky [2]. We remark that our algorithm for computing $\psi_{\lambda}^{\mathbf{i}}$ is completely different from the known methods, and hence provides an alternative description of $R_{\mathbf{i}_0}^{\mathbf{i}}$.

Let us explain the basic ideas in our description of $\psi_{\lambda}^{\mathbf{i}}$. Suppose that Ω is a quiver of type A_{n-1} with a single sink and \mathbf{i} is adapted to Ω . Let $J \subset I$ be a maximal subset such that each connected component of the corresponding quiver $\Omega_J \subset \Omega$ has only one direction. Let \mathfrak{g}_J be the maximal Levi subalgebra and \mathfrak{u}_J the nilradical associated to J, respectively.

The first step is to prove a tensor product decomposition $\mathcal{B}_{\mathbf{i}} \cong B^J(\infty) \otimes B_J(\infty)$ as a crystal, where $B_J(\infty)$ is the crystal of the negative part of $U_q(\mathfrak{g}_J)$ and $B^J(\infty)$ is the crystal of the quantum nilpotent subalgebra $U_q(\mathfrak{u}_J)$. The isomorphism is just given by restricting the Lusztig datum to each part, and it is a special case of the bijection introduced in [1,21] using crystal reflections. Here we show that it is indeed a morphism of crystals by using Reineke's description of $B(\infty)$ in terms of representations of Ω [19]. We refer the reader to a recent work by Salibury–Schultze–Tingley [23] on **i**-Lusztig data, which also implies the combinatorial description of Kashiwara operators on $B(\infty)$ used in this paper.

The next step is to construct an embedding of $B(\lambda) \otimes T_{-\lambda}$ into $B^J(\infty) \otimes B_J(\infty)$ using a crystal theoretic interpretation of Sagan and Stanley's skew RSK algorithm [20], which was observed in the author's previous work [12] (see also [13,14]), and using the embedding (1.1) in case of **i** adapted to a quiver with one direction. Hence we obtain an **i**-Lusztig datum of a Young tableau for any **i** adapted to Ω . One may consider the Download English Version:

https://daneshyari.com/en/article/5777473

Download Persian Version:

https://daneshyari.com/article/5777473

Daneshyari.com