Counting lattice points in free sums of polytopes **

Alan Stapledon

A R T I C L E I N F O

Article history:

Received 9 January 2016
Available online 3 May 2017

Keywords:

Polytopes
Ehrhart theory
Free sums
Weighted Ehrhart polynomial

Abstract

We show how to compute the Ehrhart polynomial of the free sum of two lattice polytopes containing the origin P and Q in terms of the enumerative combinatorics of P and Q. This generalizes work of Beck, Jayawant, McAllister, and Braun, and follows from the observation that the weighted h^{*}-polynomial is multiplicative with respect to the free sum. We deduce that given a lattice polytope P containing the origin, the problem of computing the number of lattice points in all rational dilates of P is equivalent to the problem of computing the number of lattice points in all integer dilates of all free sums of P with itself.

© 2017 Elsevier Inc. All rights reserved.

Let P and Q be full-dimensional lattice polytopes containing the origin with respect to lattices $N_{P} \cong \mathbb{Z}^{\operatorname{dim} P}$ and $N_{Q} \cong \mathbb{Z}^{\operatorname{dim} Q}$ respectively. The free sum (also known as 'direct sum') $P \oplus Q$ is a full-dimensional lattice polytope containing the origin in the lattice $N_{P} \oplus N_{Q}$, defined by:

$$
P \oplus Q=\operatorname{conv}\left(\left(P \times 0_{Q}\right) \cup\left(0_{P} \times Q\right)\right) \subseteq\left(N_{P} \oplus N_{Q}\right)_{\mathbb{R}}
$$

[^0]where $\operatorname{conv}(S)$ denotes the convex hull of a set $S, N_{\mathbb{R}}:=N \otimes_{\mathbb{R}} \mathbb{R}$ for a lattice N, and $0_{P}, 0_{Q}$ denote the origin in N_{P}, N_{Q} respectively.

The Ehrhart polynomial $f(P ; m)$ of P is a polynomial of $\operatorname{degree} \operatorname{dim} P$ characterized by the property that $f(P ; m)=\#\left(m P \cap N_{P}\right)$ for all $m \in \mathbb{Z}_{\geq 0}[6]$. Our goal is to describe the Ehrhart polynomial of $P \oplus Q$ in terms of the enumerative combinatorics of P and Q.

We first observe that $\left\{\#\left(\lambda P \cap N_{P}\right) \mid \lambda \in \mathbb{Q} \geq 0\right\}$ and $\left\{\#\left(\lambda Q \cap N_{Q}\right) \mid \lambda \in \mathbb{Q} \geq 0\right\}$ determine $\left\{\#\left(\lambda(P \oplus Q) \cap\left(N_{P} \oplus N_{Q}\right)\right) \mid \lambda \in \mathbb{Q}_{\geq 0}\right\}$, and hence the set $\left\{\#\left(m(P \oplus Q) \cap\left(N_{P} \oplus N_{Q}\right)\right) \mid\right.$ $\left.m \in \mathbb{Z}_{\geq 0}\right\}$, which is encoded by the Ehrhart polynomial of $P \oplus Q$ (see (9) for a partial converse). Indeed, this follows from the following observation: if $\partial_{\neq 0} P$ denotes the union of the facets of P not containing the origin, then, by definition, for any $\lambda \in \mathbb{Q} \geq 0$:

$$
\#\left(\partial_{\neq 0}(\lambda P) \cap N_{P}\right)=\#\left(\lambda P \cap N_{P}\right)-\max _{0 \leq \lambda^{\prime}<\lambda} \#\left(\lambda^{\prime} P \cap N_{P}\right),
$$

and

$$
\begin{equation*}
\partial_{\neq 0}(\lambda(P \oplus Q))=\bigcup_{\substack{\lambda_{P}, \lambda_{Q} \geq 0 \\ \lambda_{P}+\lambda_{Q}=\lambda}} \partial_{\neq 0}\left(\lambda_{P} P\right) \times \partial_{\neq 0}\left(\lambda_{Q} Q\right) \tag{1}
\end{equation*}
$$

where the right hand side is a disjoint union.
It will be useful to express the invariants above in terms of corresponding generating series. Firstly, the Ehrhart polynomial may be encoded as follows:

$$
\begin{equation*}
\sum_{m \geq 0} f(P ; m) t^{m}=\frac{h^{*}(P ; t)}{(1-t)^{\operatorname{dim} P+1}} \tag{2}
\end{equation*}
$$

where $h^{*}(P ; t) \in \mathbb{Z}[t]$ is a polynomial of degree at most $\operatorname{dim} P$ with non-negative integer coefficients, called the h^{*}-polynomial of $P[10]$. Secondly, let $M_{P}:=\operatorname{Hom}\left(N_{P}, \mathbb{Z}\right)$ be the dual lattice, and recall that the dual polyhedron P^{\vee} is defined to be $P^{\vee}=\left\{u \in\left(M_{P}\right)_{\mathbb{R}} \mid\right.$ $\langle u, v\rangle \geq-1$ for all $v \in P\}$. Let

$$
\begin{equation*}
r_{P}:=\min \left\{r \in \mathbb{Z}_{>0} \mid r P^{\vee} \text { is a lattice polyhedron }\right\} . \tag{3}
\end{equation*}
$$

Note that since $(P \oplus Q)^{\vee}$ is the Cartesian product $P^{\vee} \times Q^{\vee}$, we have $r_{P \oplus Q}=\operatorname{lcm}\left(r_{P}, r_{Q}\right)$. Then one may associate a generating series encoding $\left\{\#\left(\lambda P \cap N_{P}\right) \mid \lambda \in \mathbb{Q}_{\geq 0}\right\}$:

$$
\begin{equation*}
\sum_{\lambda \in \mathbb{Q} \geq 0} \#\left(\partial_{\neq 0}(\lambda P) \cap N_{P}\right) t^{\lambda}=\frac{\tilde{h}(P ; t)}{(1-t)^{\operatorname{dim} P}} \tag{4}
\end{equation*}
$$

where $\widetilde{h}(P ; t) \in \mathbb{Z}\left[t^{\frac{1}{r_{P}}}\right]$ is a polynomial of degree at most $\operatorname{dim} P$ with fractional exponents and non-negative integer coefficients, called the weighted h^{*}-polynomial of P.

Example 1. Let $N_{P}=\mathbb{Z}$ and let $P=[-2,2], Q=[-1,3]=P+1$. Then $r_{P}=2, r_{Q}=3$, and one may compute:

Download Persian Version:
https://daneshyari.com/article/5777483

Daneshyari.com

[^0]: This work was initiated and partially completed while the author was supported by a University of Sydney Postdoctoral Fellowship under the supervision of A/Prof Anthony Henderson. The author would like to thank Anthony Henderson for some useful discussions.

 E-mail address: astapldn@gmail.com.

