

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

The weighted complete intersection theorem

Department of Computer Science, Technion — Israel Institute of Technology, Israel

A R T I C L E I N F O A B S T R A C T

Article history: Received 1 November 2016 Available online 3 May 2017

Keywords: Shifting Intersecting families Erdős–Ko–Rado theorem Ahlswede–Khachatrian theorem

The seminal complete intersection theorem of Ahlswede and Khachatrian gives the maximum cardinality of a *k*-uniform *t*-intersecting family on *n* points, and describes all optimal families for $t \geq 2$. We extend this theorem to the weighted setting, in which we consider unconstrained families on *n* points with respect to the measure μ_p given by $\mu_p(A)$ $p^{|A|}(1-p)^{n-|A|}$. Our theorem gives the maximum μ_p measure of a *t*-intersecting family on *n* points, and describes all optimal families for $t \geq 2$.

© 2017 Elsevier Inc. All rights reserved.

Journal of Combinatorial Theory

CrossMark

1. Introduction

The Erdős–Ko–Rado theorem [\[8\],](#page--1-0) a basic result in extremal combinatorics, states that when $k \leq n/2$, a *k*-uniform intersecting family on *n* points contains at most $\binom{n-1}{k-1}$ sets; and furthermore, when $k < n/2$ the only families achieving these bounds are *stars*, consisting of all sets containing some fixed point.

The analog of the Erdős–Ko–Rado theorem for *t*-intersecting families, in which every two sets must have at least *t* points in common, was proved by Ahlswede and Khacha-trian [\[3,5\],](#page--1-0) who gave two different proofs (see also the monograph [\[1\]\)](#page--1-0). When $t \geq 2$, the optimal families are always of the form $\mathcal{F}_{t,r} = \{S : |S \cap [t+2r]| \ge t+r\}$, as had been conjectured by Frankl [\[9\].](#page--1-0) They also determined the maximum families under the

E-mail address: yuvalfi@cs.technion.ac.il.

condition that the intersection of all sets in the family is empty $[2]$, as well as the maximum non-uniform *t*-intersecting families [\[6\]](#page--1-0) ("Katona's theorem"). They also proved an analogous theorem for the Hamming scheme [\[4\].](#page--1-0)

Dinur and Safra [\[7\]](#page--1-0) considered analogous questions in the weighted setting. They were interested in the maximum *μ^p* measure of a *t*-intersecting family on *n* points, where the μ_p measure is given by $\mu_p(A) = p^{|A|}(1-p)^{n-|A|}$. When $p \leq 1/2$, they related this question to the setting of the original Ahlswede–Khachatrian theorem with parameters *K*, *N* satisfying $K/N \approx p$. A similar argument appears in work of Ahlswede–Khachatrian [\[6,4\]](#page--1-0) in different guise. The μ_p setting has since been widely studied, and has been used by Friedgut [\[10\]](#page--1-0) and by Keller and Lifshitz [\[12\]](#page--1-0) to prove stability versions of the Ahlswede– Khachatrian theorem.

While not stated explicitly in either work, the methods of Dinur–Safra [\[7\]](#page--1-0) and Ahlswede–Khachatrian [\[4\]](#page--1-0) give a proof of an Ahlswede–Khachatrian theorem in the *μ^p* setting for all $p < 1/2$, without any constraint on the number of points. More explicitly, let $w(n, t, p)$ be the maximum μ_p -measure of a *t*-intersecting family on *n* points, and let $w_{\text{sup}}(t, p) = \sup_n w(n, t, p)$. The techniques of Dinur–Safra and Ahlswede–Khachatrian show that when $\frac{r}{t+2r-1} \leq p \leq \frac{r+1}{t+2r+1}$, $w_{\sup}(t, p) = \mu_p(\mathcal{F}_{t,r})$. This theorem is incomplete, for three different reasons: it describes $w_{\text{sup}}(t, p)$ rather than $w(n, t, p)$, it only works for $p < 1/2$, and it doesn't describe the optimal families.

Katona [\[11\]](#page--1-0) solved the case $p = 1/2$, which became known as "Katona's theorem". Ahlswede and Khachatrian gave a different proof $[6]$, and their technique applies also to the case $p > 1/2$. We complete the picture by finding $w(n, t, p)$ for all *n*, *t*, *p* and determining all families achieving this bound when $t \geq 2$. We do this by rephrasing the two original proofs $[3,5]$ of the Ahlswede–Khachatrian theorem in the μ_p setting. Curiously, whereas the classical Ahlswede–Khachatrian theorem can be proven using either of the techniques described in [\[3,5\],](#page--1-0) our proof needs to use both.

2. Preliminaries

We will use $[n]$ for $\{1, \ldots, n\}$, and $\binom{[n]}{k}$ for all subsets of $[n]$ of size *k*. We also use the somewhat unorthodox notation $\binom{[n]}{\geq k}$ for all subsets of $[n]$ of size at least *k*. The set of all subsets of a set *A* will be denoted 2*^A*.

A *family* on *n* points is a collection of subsets of $[n]$. A family F is *t*-intersecting if any $A, B \in \mathcal{F}$ satisfy $|A \cap B| \geq t$. A family is *intersecting* if it is 1-intersecting.

For any $p \in (0,1)$ and any *n*, the product measure μ_p is a measure on the set of subsets of [*n*] given by $\mu_p(A) = p^{|A|}(1-p)^{n-|A|}$.

A family F on *n* points is *monotone* if whenever $A \in \mathcal{F}$ and $B \supseteq A$ then $B \in \mathcal{F}$. Given a family F, its *up-set* $\langle F \rangle$ is the smallest monotone family containing F, consisting of all supersets of sets in $\mathcal{F}.$

For $n \geq t \geq 1$ and $p \in (0,1)$, the parameter $w(n,t,p)$ is the maximum of $\mu_p(\mathcal{F})$ over all *t*-intersecting families on *n* points, and the parameter $w_{\text{sup}}(t, p)$ is given by

Download English Version:

<https://daneshyari.com/en/article/5777485>

Download Persian Version:

<https://daneshyari.com/article/5777485>

[Daneshyari.com](https://daneshyari.com)