Power series with coefficients from a finite set ${ }^{\boldsymbol{\alpha}}$

Jason P. Bell ${ }^{\text {a }}$, Shaoshi Chen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
${ }^{\mathrm{b}}$ Key Laboratory of Mathematics Mechanization, AMSS, Chinese Academy of Sciences, 100190 Beijing, China

A R T I C L E I N F O

Article history:

Received 17 June 2016
Available online xxxx

Keywords:

Power series
Szegő's theorem
D-finiteness
Integer points

Abstract

We prove in this paper that a multivariate D-finite power series with coefficients from a finite set is rational. This generalizes a rationality theorem of van der Poorten and Shparlinski in 1996. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

In his thesis [16], Hadamard began the study of the relationship between the coefficients of a power series and the properties of the function it represents, especially its singularities and natural boundaries. Two special cases of the problem have been extensively studied: one is on power series with integer coefficients and the other is on power series with finitely many distinct coefficients.

[^0]In the first case, Fatou [13] in 1906 proved a lemma on rational power series with integer coefficients, which is now known as Fatou's lemma [33, p. 275]. The next celebrated result is the Pólya-Carlson theorem, which asserts that a power series with integer coefficients and of radius of convergence 1 is either rational or has the unit circle as its natural boundary. This theorem was first conjectured in 1915 by Pólya [25] and later proved in 1921 by Carlson [7]. Several extensions of the Pólya-Carlson theorem have been presented in $[26,24,14,31,22,35,2]$.

In the second case, Fatou [13] was also the first to investigate power series with coefficients from a finite set by showing that such power series are either rational or transcendental. The study was continued by Pólya [25] in 1916, Jentzsch [17] in 1917, Carlson [6] in 1918 and finally Szegő [36,37] in 1922 settled the question by proving the following beautiful theorem (see [27, Chap. 11] and [10, Chap. 10] for its proof and related results).

Theorem 1 (Szegö, 1922). Let $F=\sum f(n) x^{n}$ be a power series with coefficients from a finite values of \mathbb{C}. If F is continuable beyond the unit circle then it is a rational function of the form $F=P(x) /\left(1-x^{m}\right)$, where P is a polynomial and m a positive integer.

Szegő's theorem was generalized in 1945 by Duffin and Schaeffer [11] by assuming a weaker condition that f is bounded in a sector of the unit circle. In 2008, P. Borwein et al. in [5] gave a shorter proof of Duffin and Schaeffer's theorem. By using Szegő's theorem, van der Poorten and Shparlinski proved the following result [38].

Theorem 2 (van der Poorten and Shparlinski, 1996). Let $F=\sum f(n) x^{n}$ be a power series with coefficients from a finite values of \mathbb{Q}. If $f(n)$ satisfies a linear recurrence equation with polynomial coefficients, then F is rational.

A univariate sequence $f: \mathbb{N} \rightarrow K$ is P-recursive if it satisfies a linear recurrence equation with polynomial coefficients in $K[n]$. A power series $F=\sum f(n) x^{n}$ is D-finite if it satisfies a linear differential equation with polynomial coefficients in $K[x]$. By [32, Theorem 1.5], a sequence $f(n)$ is P-recursive if and only if the power series $F:=\sum f(n) x^{n}$ is D-finite. The notion of D-finite power series can be generalized to the multivariate case (see Definition 4). Our main result is the following multivariate generalization of Theorem 2.

Theorem 3. Let K be a field of characteristic zero, and let Δ be a finite subset of K. Suppose that $f: \mathbb{N}^{d} \rightarrow \Delta$ with $d \geq 1$ is such that

$$
F\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}} f\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} \in K\left[\left[x_{1}, \ldots, x_{d}\right]\right]
$$

is D-finite. Then F is rational.

https://daneshyari.com/en/article/5777491

Download Persian Version:

https://daneshyari.com/article/5777491

Daneshyari.com

[^0]: \% J.P. Bell was supported by the NSERC Grant RGPIN-2016-03632. S. Chen was supported by the NSFC Grants 11501552, 11688101 and by the President Fund of the Academy of Mathematics and Systems Science, CAS (2014-cjrwlzx-chshsh).

 E-mail addresses: jpbell@uwaterloo.ca (J.P. Bell), schen@amss.ac.cn (S. Chen).

