Embedding of classical polar unitals in $\mathrm{PG}\left(2, q^{2}\right)$

Gábor Korchmáros ${ }^{\text {a }}$, Alessandro Siciliano ${ }^{\text {a }}$, Tamás Szőnyi ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Informatica ed Economia, Università degli Studi
della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
b ELTE Eötvös Loránd University, Department of Computer Science and
MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 16 January 2017

Keywords:

Unital
Embedding
Finite Desarguesian plane
Hermitian curve

A B S T R A C T

A unital, that is, a block-design $2-\left(q^{3}+1, q+1,1\right)$, is embedded in a projective plane Π of order q^{2} if its points and blocks are points and lines of Π. A unital embedded in $\mathrm{PG}\left(2, q^{2}\right)$ is Hermitian if its points and blocks are the absolute points and non-absolute lines of a unitary polarity of $\mathrm{PG}\left(2, q^{2}\right)$. A classical polar unital is a unital isomorphic, as a block-design, to a Hermitian unital. We prove that there exists only one embedding of the classical polar unital in $\mathrm{PG}\left(2, q^{2}\right)$, namely the Hermitian unital.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In finite geometry, embedding of geometric structures into projective spaces has been a central question for many years which still presents numerous open problems. The most natural one asks about existence and uniqueness, that is, whether a block-design can be embedded in a given projective plane and, if this is the case, in how many different ways such an embedding can be done. In this paper we deal with such a uniqueness problem

[^0]http://dx.doi.org/10.1016/j.jcta.2017.08.002 0097-3165/® 2017 Elsevier Inc. All rights reserved.
for embedding of the Hermitian unital, as a block design, into a Desarguesian projective plane.

A unital is defined to be a set of $q^{3}+1$ points equipped with a family of subsets, each of size $q+1$, such that every pair of distinct points is contained in exactly one subset of the family. Such subsets are usually called blocks, so unitals are $2-\left(q^{3}+1, q+1,1\right)$ block-designs. A unital is embedded in a projective plane Π of order q^{2} if its points are points of Π and its blocks are lines of Π. Sufficient conditions for a unital to be embeddable in a projective plane are given in [7]. Computer aided searches suggest that there should be plenty of unitals, especially for small values of q, but those embeddable in a projective plane are quite rare, see $[1,3,9,11,8]$. In the Desarguesian projective plane $\mathrm{PG}\left(2, q^{2}\right)$, a unital arises from a unitary polarity in $\mathrm{PG}\left(2, q^{2}\right)$: the points of the unital are the absolute points, and the blocks are the non-absolute lines of the polarity. The name of "Hermitian unital" is commonly used for such a unital since its points are the points of the Hermitian curve defined over $\operatorname{GF}\left(q^{2}\right)$. A classical polar unital is a unital isomorphic, as a block-design, to a Hermitian unital. By definition, the classical polar unital can be embedded in $\operatorname{PG}\left(2, q^{2}\right)$ as the Hermitian unital. It has been conjectured for a long time that this is the unique embedding of the classical polar unital in $\mathrm{PG}\left(2, q^{2}\right)$ although no explicit reference seems to be available in the literature. Our goal is to prove this conjecture. Our notation and terminology are standard. The principal references on unitals are $[2,5]$.

2. Projections and Hermitian unital

Let \mathcal{H} be a Hermitian unital in the Desarguesian plane $\operatorname{PG}\left(2, q^{2}\right)$. Any non-absolute line intersects \mathcal{H} in a Baer subline, that is a set of $q+1$ points isomorphic to $\operatorname{PG}(1, q)$. Take any two distinct non-absolute lines ℓ and ℓ^{\prime}. For any point Q outside both ℓ and ℓ^{\prime}, the projection of ℓ to ℓ^{\prime} from Q takes $\ell \cap \mathcal{H}$ to a Baer subline of ℓ^{\prime}. We say that Q is a full point with respect to the line pair $\left(\ell, \ell^{\prime}\right)$ if the projection from Q takes $\ell \cap \mathcal{H}$ to $\ell^{\prime} \cap \mathcal{H}$.

From now on we assume that ℓ and ℓ^{\prime} meet in a point P of $\mathrm{PG}\left(2, q^{2}\right)$ not lying in \mathcal{H}. We denote the polar line of P with respect to the unitary polarity associated to \mathcal{H} by P^{\perp}. Then P^{\perp} is a non-absolute line. We will prove that if q is even then $P^{\perp} \cap \mathcal{H}$ contains a unique full point. This does not hold true for odd q. In fact, we will prove that for odd $q, P^{\perp} \cap \mathcal{H}$ contains zero or two full points depending on the mutual position of ℓ and ℓ^{\prime}.

To work out our proofs we need some notation and known results regarding \mathcal{H} and the projective unitary group $\operatorname{PGU}(3, q)$ preserving \mathcal{H}.

Up to a change of the homogeneous coordinate system $\left(X_{1}, X_{2}, X_{3}\right)$ in $\operatorname{PG}\left(2, q^{2}\right)$, the points of \mathcal{H} are those satisfying the equation

$$
\begin{equation*}
X_{1}^{q+1}+X_{2}^{q+1}+X_{3}^{q+1}=0 \tag{1}
\end{equation*}
$$

Since the unitary group $\operatorname{PGU}(3, q)$ preserving \mathcal{H} acts transitively on the points of $\operatorname{PG}\left(2, q^{2}\right)$ not lying in \mathcal{H}, we may assume $P=(0,1,0)$. Then P^{\perp} has equation $X_{2}=0$.

Download Persian Version:

https://daneshyari.com/article/5777503

Daneshyari.com

[^0]: E-mail addresses: gabor.korchmaros@unibas.it (G. Korchmáros), alessandro.siciliano@unibas.it (A. Siciliano), szonyi@cs.elte.hu (T. Szőnyi).

