

Journal of Combinatorial Theory, Series A 152 (2017) 190-224

A divisibility result in combinatorics of generalized braids

Loïc Foissy, Jean Fromentin

A R T I C L E I N F O

Article history: Received 15 October 2015 Available online xxxx

Keywords: Braid monoid Garside normal form Adjacency matrix

ABSTRACT

For every finite Coxeter group Γ , each positive braid in the corresponding braid group admits a unique decomposition as a finite sequence of elements of Γ , the so-called Garside-normal form. The study of the associated adjacency matrix $\operatorname{Adj}(\Gamma)$ allows to count the number of Garside-normal form of a given length. In this paper we prove that the characteristic polynomial of $\operatorname{Adj}(B_n)$ divides the one of $\operatorname{Adj}(B_{n+1})$. The key point is the use of a Hopf algebra based on signed permutations. A similar result was already known for the type A. We observe that this does not hold for type D. The other Coxeter types (I, E, F and H) are also studied.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

Let S be a set. A Coxeter matrix on S is a symmetric matrix $M = (m_{s,t})$ whose entries are in $\mathbb{N} \cup \{+\infty\}$ and such that $m_{s,t} = 1$ if, and only if, s = t. A Coxeter matrix is usually represented by a labelled Coxeter graph Γ whose vertices are the elements of S; there is an edge between s and t labelled by $m_{s,t}$ if, and only if, $m_{s,t} \ge 3$. From such a graph Γ , we define a group W_{Γ} by the presentation:

E-mail address: jean.fromentin@math.cnrs.fr (J. Fromentin).

$$W_{\Gamma} = \left\langle S \middle| \begin{array}{cc} s^2 = 1 & \text{for } s \in S \\ \operatorname{prod}(s,t;m_{s,t}) = \operatorname{prod}(t,s;m_{t,s}) & \text{for } s,t \in S \text{ and } m_{s,t} \neq +\infty \end{array} \right\rangle,$$

where $\operatorname{prod}(s, t; m_{s,t})$ is the product $s t s \dots$ with $m_{s,t}$ terms. The pair (W_{Γ}, S) is called a *Coxeter system*, and W_{Γ} is the *Coxeter group* of type Γ . Note that two elements sand t of S commute in W_{Γ} if, and only if, s and t are not connected in Γ . Denoting by $\Gamma_1, \dots, \Gamma_k$ the connected components of Γ , we obtain that W_{Γ} is the direct product $W_{\Gamma_1} \times \dots \times W_{\Gamma_k}$. The Coxeter group W_{Γ} is said to be *irreducible* if the Coxeter graph Γ is connected. We say that a Coxeter graph is *spherical* if the corresponding group W_{Γ} is finite. There are four infinite families of connected spherical Coxeter graphs: A_n $(n \ge 1)$, B_n $(n \ge 2)$, D_n $(n \ge 4)$, $I_2(p)$ $(p \ge 5)$, and six exceptional graphs E_6 , E_7 , E_8 , F_4 , H_3 and H_4 . For $\Gamma = A_n$, the group W_{Γ} is the symmetric group \mathfrak{S}_{n+1} .

For a Coxeter graph Γ , we define the braid group $B(W_{\Gamma})$ by the presentation:

$$B(W_{\Gamma}) = \langle S \mid \operatorname{prod}(s,t;m_{s,t}) = \operatorname{prod}(t,s;m_{t,s}) \text{ for } s,t \in S \text{ and } m_{s,t} \neq +\infty \rangle$$

and the positive braid monoid to be the monoid presented by:

$$B^+(W_{\Gamma}) = \langle S \mid \operatorname{prod}(s,t;m_{s,t}) = \operatorname{prod}(t,s;m_{t,s}) \text{ for } s,t \in S \text{ and } m_{s,t} \neq +\infty \rangle^+.$$

The groups $B(W_{\Gamma})$ are known as Artin–Tits groups; they have been introduced in [4,2] and in [10] for spherical type. The embedding of the monoid $B^+(W_{\Gamma})$ in the corresponding group $B(W_{\Gamma})$ was established by L. Paris in [14]. For $\Gamma = A_n$, the braid group $B(W_{A_n})$ is the Artin braid group B_n and $B^+(W_{A_n})$ is the monoid of positive Artin braids B_n^+ .

We now suppose that Γ is a spherical Coxeter graph. The Garside normal form allows us to express each braid β of $B^+(W_{\Gamma})$ as a unique finite sequence of elements of W_{Γ} . This defines an injection Gar form $B^+(W_{\Gamma})$ to $W_{\Gamma}^{(\mathbb{N})}$. The Garside length of a braid $\beta \in B^+(W_{\Gamma})$ is the length of the finite sequence $\operatorname{Gar}(\beta)$. If, for all $\ell \in \mathbb{N}$, we denote by $B^{\ell}(W_{\Gamma})$ the set of braids whose Garside length is ℓ , the map Gar defines a bijection between $B^{\ell}(W_{\Gamma})$ and $\operatorname{Gar}(B^+(W_{\Gamma})) \cap W_{\Gamma}^{\ell}$.

A sequence $(s,t) \in W_{\Gamma}^2$ is said *normal* if (s,t) belongs to $B^2(W_{\Gamma})$. From a local characterization of the Garside normal form, for $\ell \ge 2$ the sequence $(w_1, ..., w_{\ell})$ of W_{Γ}^{ℓ} belongs to $\operatorname{Gar}(B^+(W_{\Gamma}))$ if, and only if, (w_i, w_{i+1}) is normal for all $i = 1, ..., \ell - 1$. Roughly speaking, in order to recognize the elements of $\operatorname{Gar}(B^+(W_{\Gamma}))$ among thus of $W_{\Gamma}^{(\mathbb{N})}$ it is enough to recognize the elements of $B^2(W_{\Gamma})$ among thus of W_{Γ}^2 .

We define a square matrix $\operatorname{Adj}_{\Gamma} = (a_{u,v})$, indexed by the elements of W_{Γ} , by:

$$a_{u,v} = \begin{cases} 1 & \text{if } (u,v) \text{ is normal,} \\ 0 & \text{otherwise.} \end{cases}$$

For $\ell \ge 1$, the number of positive braids whose Garside length is ℓ is then:

Download English Version:

https://daneshyari.com/en/article/5777519

Download Persian Version:

https://daneshyari.com/article/5777519

Daneshyari.com