

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs $\stackrel{\bigstar}{\Rightarrow}$

Journal of

Jie Han^a, Chuanyun Zang^b, Yi Zhao^b

 ^a Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, Brazil
^b Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States

A R T I C L E I N F O

Article history: Received 30 March 2015 Available online xxxx

Keywords: Graph packing Hypergraph Absorbing method Regularity lemma

ABSTRACT

Given positive integers $a \leq b \leq c$, let $K_{a,b,c}$ be the complete 3-partite 3-uniform hypergraph with three parts of sizes a, b, c. Let H be a 3-uniform hypergraph on n vertices where n is divisible by a + b + c. We asymptotically determine the minimum vertex degree of H that guarantees a perfect $K_{a,b,c}$ -tiling, that is, a spanning subgraph of H consisting of vertex-disjoint copies of $K_{a,b,c}$. This partially answers a question of Mycroft, who proved an analogous result with respect to codegree for r-uniform hypergraphs for all $r \geq 3$. Our proof uses a lattice-based absorbing method, the concept of fractional tiling, and a recent result on shadows for 3-graphs.

© 2017 Elsevier Inc. All rights reserved.

E-mail addresses: jhan@ime.usp.br (J. Han), czang1@student.gsu.edu (C. Zang), yzhao6@gsu.edu (Y. Zhao).

 $^{^{*}}$ The first author is supported by FAPESP (Proc. 2013/03447-6, 2014/18641-5, 2015/07869-8). The third author is partially supported by NSA grant H98230-12-1-0283 and NSF grant DMS-1400073.

1. Introduction

Given $r \geq 2$, an *r*-uniform hypergraph (in short, *r*-graph) consists of a vertex set Vand an edge set $E \subseteq \binom{V}{r}$, that is, every edge is an *r*-element subset of V. Given an *r*-graph H with a set S of d vertices, where $1 \leq d \leq r - 1$, we define $\deg_H(S)$ to be the number of edges containing S (the subscript H is omitted if it is clear from the context). The minimum d-degree $\delta_d(H)$ of H is the minimum of $\deg_H(S)$ over all d-vertex sets Sin H. The minimum 1-degree is also referred as the minimum vertex degree.

Given two r-graphs F and H, an F-tiling (also known as F-packing) of H is a collection of vertex-disjoint copies of F in H. An F-tiling is called a perfect F-tiling (or an F-factor) of H if it covers all the vertices of H. An obvious necessary condition for H to contain an F-factor is |V(F)| | |V(H)|. Given an integer n that is divisible by |V(F)|, we define the tiling threshold $t_d(n, F)$ to be the smallest integer t such that every r-graph H of order n with $\delta_d(H) \geq t$ contains an F-factor.

As a natural extension of the matching problem, tiling has been intensively studied in the past two decades (see survey [21]). Much work has been done on graphs (r = 2), see e.g., [10,2,19,22]. In particular, Kühn and Osthus [22] determined $t_1(n, F)$, for any graph F, up to an additive constant. Tiling problems become much harder for hypergraphs $(r \ge 3)$. For example, despite efforts from many researchers [1,6,13,17,18,23,29,31,32], we still do not know the vertex degree threshold for a perfect matching in r-graphs for arbitrary r.

Other than the matching problem, only a few tiling thresholds are known (see survey [34]) Let K_4^3 denote the complete 3-graph on four vertices, and let $K_4^3 - e$ denote the (unique) 3-graph on four vertices with three edges. Recently Lo and Markström [25] proved that $t_2(n, K_4^3) = (1 + o(1))3n/4$, and Keevash and Mycroft [16] determined the exact value of $t_2(n, K_4^3)$ for sufficiently large n. In [24], Lo and Markström proved that $t_2(n, K_4^3 - e) = (1 + o(1))n/2$. Let C_4^3 be the unique 3-graph on four vertices with two edges (this 3-graph was denoted by $K_4^3 - 2e$ in [5], and by Y in [14]). Kühn and Osthus [20] showed that $t_2(n, C_4^3) = (1 + o(1))n/4$, and Czygrinow, DeBiasio and Nagle [5] determined $t_2(n, C_4^3)$ exactly for large n. Recently Mycroft [27] determined $t_{r-1}(n, F)$ asymptotically for many r-partite r-graphs F including all complete r-partite r-graphs and loose cycles.

There are fewer tiling results on vertex degree conditions. Lo and Markström [25] determined $t_1(n, K_3^3(m))$ and $t_1(n, K_4^4(m))$ asymptotically, where $K_r^r(m)$ denotes the complete *r*-partite *r*-graph with *m* vertices in each part. Recently Han and Zhao [15] and independently Czygrinow [4] determined $t_1(n, C_4^3)$ exactly for sufficiently large *n*. In this paper we extend these results by determining $t_1(n, K)$ asymptotically for all complete 3-partite 3-graphs *K*, and thus partially answer a question of My-croft [26].

Download English Version:

https://daneshyari.com/en/article/5777557

Download Persian Version:

https://daneshyari.com/article/5777557

Daneshyari.com