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In this paper, we prove the asymptotic multipartite version 
of the Alon–Yuster theorem, which is a generalization of the 
Hajnal–Szemerédi theorem: If k ≥ 3 is an integer, H is 
a k-colorable graph and γ > 0 is fixed, then, for every 
sufficiently large n, where |V (H)| divides n, and for every 
balanced k-partite graph G on kn vertices with each of 
its corresponding 

(
k
2

)
bipartite subgraphs having minimum 

degree at least (k − 1)n/k + γn, G has a subgraph consisting 
of kn/|V (H)| vertex-disjoint copies of H.
The proof uses the Regularity method together with linear 
programming.
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1. Introduction

1.1. Motivation

One of the celebrated results of extremal graph theory is the theorem of Hajnal and 
Szemerédi on tiling simple graphs with vertex-disjoint copies of a given complete graph 
Kk on k vertices. Let G be a simple graph with vertex-set V (G) and edge-set E(G). We 
denote by degG(v), or simply deg(v), the degree of a vertex v ∈ V (G) and we denote by 
δ(G) the minimum degree of the graph G. For a graph H such that |V (H)| divides |V (G)|, 
we say that G has a perfect H-tiling (also a perfect H-factor or perfect H-packing) if 
there is a subgraph of G that consists of |V (G)|/|V (H)| vertex-disjoint copies of H.

The theorem of Hajnal and Szemerédi can be then stated in the following way:

Theorem 1 (Hajnal, Szemerédi [10]). If G is a graph on n vertices, k | n, and δ(G) ≥
(k − 1)n/k, then G has a perfect Kk-tiling.

The case of k = 3 was first proven by Corrádi and Hajnal [5] before the general case. 
The original proof in [10] was relatively long and intricate. A shorter proof was provided 
later by Kierstead and Kostochka [16]. Kierstead, Kostochka, Mydlarz and Szemerédi [17]
improved this proof and gave a fast algorithm for finding Kk-tilings in n-vertex graphs 
with minimum degree at least (k − 1)n/k.

The question of finding a minimum-degree condition for the existence of a perfect 
H-tiling in the case when H is not a clique and n obeys some divisibility conditions was 
first considered by Alon and Yuster [1]:

Theorem 2 (Alon, Yuster [1]). Let H be an h-vertex graph with chromatic number k
and let γ > 0. If n is large enough, h | n and G is a graph on n vertices with δ(G) ≥
(k − 1)n/k + γn, then G has a perfect H-tiling.

Komlós, Sárközy and Szemerédi [20] removed the γn term from the minimum degree 
condition and replaced it with a constant that depends only on H.

Kühn and Osthus [23] determined that (1 − 1/χ∗(H))n + C was the necessary mini-
mum degree to guarantee an H-tiling in an n-vertex graph for n sufficiently large, and 
they also showed that this was best possible up to the additive constant. The constant 
C = C(H) depends only on H and χ∗ is an invariant related to the so-called critical 
chromatic number of H, which was introduced by Komlós [18].

1.2. Background

In this paper, we consider the multipartite variant of Theorem 2. Before we can state 
the problem, we need a few definitions.



Download	English	Version:

https://daneshyari.com/en/article/5777580

Download	Persian	Version:

https://daneshyari.com/article/5777580

Daneshyari.com

https://daneshyari.com/en/article/5777580
https://daneshyari.com/article/5777580
https://daneshyari.com/

