Journal of Combinatorial Theory, Series B ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Vida Dujmović ^{a,1}, Pat Morin ^{b,2}, David R. Wood ^{c,3}

- ^a School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa. Canada
- ^b School of Computer Science, Carleton University, Ottawa, Canada
- ^c School of Mathematical Sciences, Monash University, Melbourne, Australia

ARTICLE INFO

Article history: Received 14 April 2015 Available online xxxx

Keywords:
Separator
Planar graph
Surface
Minor
Topological minor
Layered separator
Layered treewidth
Nonrepetitive colouring
Queue layout
3-dimensional grid drawing

ABSTRACT

Graph separators are a ubiquitous tool in graph theory and computer science. However, in some applications, their usefulness is limited by the fact that the separator can be as large as $\Omega(\sqrt{n})$ in graphs with n vertices. This is the case for planar graphs, and more generally, for proper minor-closed classes. We study a special type of graph separator, called a layered separator, which may have linear size in n, but has bounded size with respect to a different measure, called the width. We prove, for example, that planar graphs and graphs of bounded Euler genus admit layered separators of bounded width. More generally, we characterise the minor-closed classes that admit layered separators of bounded width as those that exclude a fixed apex graph as a minor.

We use layered separators to prove $\mathcal{O}(\log n)$ bounds for a number of problems where $\mathcal{O}(\sqrt{n})$ was a long-standing previous best bound. This includes the nonrepetitive chromatic number and queue-number of graphs with bounded Euler genus. We extend these results with a $\mathcal{O}(\log n)$ bound on the nonrepetitive chromatic number of graphs excluding a fixed topological minor, and a $\log^{\mathcal{O}(1)} n$ bound on the queue-

http://dx.doi.org/10.1016/j.jctb.2017.05.006

0095-8956/Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved.

Please cite this article in press as: V. Dujmović et al., Layered separators in minor-closed graph classes with applications, J. Combin. Theory Ser. B (2017), http://dx.doi.org/10.1016/j.jctb.2017.05.006

[☆] A short version of this paper and reference [22] was presented at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS '13).

Research supported by NSERC and the Ontario Ministry of Research and Innovation.

² Research supported by NSERC.

³ Research supported by the Australian Research Council.

2

number of graphs excluding a fixed minor. Only for planar graphs were $\log^{\mathcal{O}(1)} n$ bounds previously known. Our results imply that every n-vertex graph excluding a fixed minor has a 3-dimensional grid drawing with $n\log^{\mathcal{O}(1)} n$ volume, whereas the previous best bound was $\mathcal{O}(n^{3/2})$.

Crown Copyright © 2017 Published by Elsevier Inc. All rights reserved.

Contents

1.	Introduction	2
	1.1. Layered separations	3
	1.2. Queue-number and 3-dimensional grid drawings	4
	1.3. Nonrepetitive graph colourings	6
2.	Treewidth and layered treewidth	7
3.	Graphs on surfaces	10
4.	Clique-sums	4
5.	The graph minor structure theorem	15
6.	Rich decompositions and shadow-complete layerings	20
7.	Track and queue layouts	23
8.	3-dimensional graph drawing	25
9.	Nonrepetitive colourings	26
10.	Reflections	28
Ackno	owledgments	30
Apper	ndix A. Recursive separators	30
Apper	ndix B. Track layout construction	32
Refere	ences	33

1. Introduction

Graph separators are a ubiquitous tool in graph theory and computer science since they are key to many divide-and-conquer and dynamic programming algorithms. Typically, the smaller the separator the better the results obtained. For instance, many problems that are \mathcal{NP} -complete for general graphs have polynomial time solutions for classes of graphs that have bounded size separators—that is, graphs of bounded treewidth.

By the classical result of Lipton and Tarjan [53], every *n*-vertex planar graph has a separator of size $\mathcal{O}(\sqrt{n})$. More generally, the same is true for every proper minor-closed graph class,⁴ as proved by Alon et al. [3]. While these results have found widespread use, separators of size $\Theta(\sqrt{n})$, or non-constant separators in general, are not small enough to be useful in some applications.

⁴ A graph H is a topological minor of a graph G if a subdivision of H is a subgraph of G. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. A class G of graphs is minor-closed if $H \in G$ for every minor H of G for every graph $G \in G$. A minor-closed class is proper if it is not the class of all graphs.

Download English Version:

https://daneshyari.com/en/article/5777584

Download Persian Version:

https://daneshyari.com/article/5777584

<u>Daneshyari.com</u>