

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Multicolour Ramsey numbers of odd cycles

Journal of Combinatorial

Theory

A. Nicholas Day, J. Robert Johnson

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK

ARTICLE INFO

Article history: Received 24 February 2016 Available online 16 January 2017

Keywords: Ramsey numbers Odd cycles Edge colourings

ABSTRACT

We show that for any positive integer r there exists an integer k and a k-colouring of the edges of K_{2^k+1} with no monochromatic odd cycle of length less than r. This makes progress on a problem of Erdős and Graham and answers a question of Chung. We use these colourings to give new lower bounds on the k-colour Ramsey number of the odd cycle and prove that, for all odd r and all k sufficiently large, there exists a constant $\epsilon = \epsilon(r) > 0$ such that $R_k(C_r) > (r-1)(2+\epsilon)^{k-1}$. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper all *colourings* of a graph G will refer to colourings of the edges of G. The *odd girth* of G, written og(G), is the length of the shortest odd cycle in G. Given a colouring C of G we say the odd girth of C, written og(C), is the length of the shortest monochromatic odd cycle found in C. It is a simple exercise to see that it is possible to k-colour the complete graph K_{2^k} such that each colour comprises a bipartite graph. Moreover, such colourings only exist for K_n if $n \leq 2^k$. Indeed, consider labelling each vertex of K_n with a binary vector of length k, where the *i*th coordinate of the label given to a vertex is determined by which side of the bipartition of colour *i* the vertex lies in. All

 $\label{eq:http://dx.doi.org/10.1016/j.jctb.2016.12.005} 0095-8956/ © 2017$ Elsevier Inc. All rights reserved.

E-mail address: a.n.day@qmul.ac.uk (A.N. Day).

vertices of K_n must receive distinct labels, and so $n \leq 2^k$. It follows that any k-colouring of K_{2^k+1} must contain a monochromatic odd cycle. Based on this observation, Erdős and Graham [4] asked the following question:

Question 1. How large can the smallest monochromatic odd cycle in a k-colouring of $K_{2^{k}+1}$ be?

Moreover, Chung [3] asked further whether or not this quantity is unbounded as k increases. In this paper we show that the size of the least odd cycle that must appear is indeed unbounded.

Theorem 2. For all positive integers r there exists an integer k and a k-colouring of $K_{2^{k}+1}$ with odd girth at least r.

The proof of Theorem 2 can be found in Section 2. From a quantitative perspective, our proof of Theorem 2 will show that there exist k-colourings of $K_{2^{k}+1}$ with odd girth at least $2^{\sqrt{2\log_2(k)-c}}$ for some constant c. This result is a consequence of Corollary 6 which can be found at the end of Section 2.

For a graph H, the k-colour Ramsey number $R_k(H)$ is defined as the least integer n such that every k-colouring of K_n contains a monochromatic copy of H. We say that a colouring of a graph G is H-free if it contains no monochromatic copy of H. Erdős and Graham [4] showed that

$$R_k(C_r) \ge (r-1)2^{k-1} + 1 \tag{1}$$

whenever $r \ge 3$ is an odd integer. The construction used to show this is as follows: When k = 1 simply take a 1-colouring of K_{r-1} , for k > 1 take two disjoint copies of the construction for k - 1 and colour every edge between the two copies with a new colour. This construction led Bondy and Erdős [2] to make the following conjecture.

Conjecture 3. (Bondy, Erdős) Equality holds in (1) for all odd integers r > 3.

In this paper we disprove Conjecture 3 by using the result of Theorem 2 to construct colourings that give new lower bounds for $R_k(C_r)$ whenever r is an odd integer and k is sufficiently large.

Theorem 4. For all odd integers r there exists a constant $\epsilon = \epsilon(r) > 0$ such that, for all k sufficiently large, $R_k(C_r) > (r-1)(2+\epsilon)^{k-1}$.

The proof of Theorem 4 can be found in Section 3. We remark that Theorem 4 can not be used to say anything about the behaviour of $R_k(C_r)$ when k is fixed and r is increasing. Bondy and Erdős [2] showed that their conjecture holds for all r when k = 2. For k = 3, Łuczak [9] employed the regularity method to prove that Bondy and Erdős's Download English Version:

https://daneshyari.com/en/article/5777621

Download Persian Version:

https://daneshyari.com/article/5777621

Daneshyari.com