Multicolour Ramsey numbers of odd cycles

A. Nicholas Day, J. Robert Johnson
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK

A R T I C L E I N F O

Article history:

Received 24 February 2016
Available online 16 January 2017
Keywords:
Ramsey numbers
Odd cycles
Edge colourings

A B S T R A C T

We show that for any positive integer r there exists an integer k and a k-colouring of the edges of $K_{2^{k}+1}$ with no monochromatic odd cycle of length less than r. This makes progress on a problem of Erdős and Graham and answers a question of Chung. We use these colourings to give new lower bounds on the k-colour Ramsey number of the odd cycle and prove that, for all odd r and all k sufficiently large, there exists a constant $\epsilon=\epsilon(r)>0$ such that $R_{k}\left(C_{r}\right)>(r-1)(2+\epsilon)^{k-1}$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper all colourings of a graph G will refer to colourings of the edges of G. The odd girth of G, written $\operatorname{og}(G)$, is the length of the shortest odd cycle in G. Given a colouring \mathcal{C} of G we say the odd girth of \mathcal{C}, written $\operatorname{og}(\mathcal{C})$, is the length of the shortest monochromatic odd cycle found in \mathcal{C}. It is a simple exercise to see that it is possible to k-colour the complete graph $K_{2^{k}}$ such that each colour comprises a bipartite graph. Moreover, such colourings only exist for K_{n} if $n \leqslant 2^{k}$. Indeed, consider labelling each vertex of K_{n} with a binary vector of length k, where the i th coordinate of the label given to a vertex is determined by which side of the bipartition of colour i the vertex lies in. All

[^0]vertices of K_{n} must receive distinct labels, and so $n \leqslant 2^{k}$. It follows that any k-colouring of $K_{2^{k}+1}$ must contain a monochromatic odd cycle. Based on this observation, Erdős and Graham [4] asked the following question:

Question 1. How large can the smallest monochromatic odd cycle in a k-colouring of $K_{2^{k}+1} b e$?

Moreover, Chung [3] asked further whether or not this quantity is unbounded as k increases. In this paper we show that the size of the least odd cycle that must appear is indeed unbounded.

Theorem 2. For all positive integers r there exists an integer k and a k-colouring of $K_{2^{k}+1}$ with odd girth at least r.

The proof of Theorem 2 can be found in Section 2. From a quantitative perspective, our proof of Theorem 2 will show that there exist k-colourings of $K_{2^{k}+1}$ with odd girth at least $2^{\sqrt{2 \log _{2}(k)-c}}$ for some constant c. This result is a consequence of Corollary 6 which can be found at the end of Section 2.

For a graph H, the k-colour Ramsey number $R_{k}(H)$ is defined as the least integer n such that every k-colouring of K_{n} contains a monochromatic copy of H. We say that a colouring of a graph G is H-free if it contains no monochromatic copy of H. Erdős and Graham [4] showed that

$$
\begin{equation*}
R_{k}\left(C_{r}\right) \geqslant(r-1) 2^{k-1}+1 \tag{1}
\end{equation*}
$$

whenever $r \geqslant 3$ is an odd integer. The construction used to show this is as follows: When $k=1$ simply take a 1 -colouring of K_{r-1}, for $k>1$ take two disjoint copies of the construction for $k-1$ and colour every edge between the two copies with a new colour. This construction led Bondy and Erdős [2] to make the following conjecture.

Conjecture 3. (Bondy, Erdős) Equality holds in (1) for all odd integers $r>3$.

In this paper we disprove Conjecture 3 by using the result of Theorem 2 to construct colourings that give new lower bounds for $R_{k}\left(C_{r}\right)$ whenever r is an odd integer and k is sufficiently large.

Theorem 4. For all odd integers r there exists a constant $\epsilon=\epsilon(r)>0$ such that, for all k sufficiently large, $R_{k}\left(C_{r}\right)>(r-1)(2+\epsilon)^{k-1}$.

The proof of Theorem 4 can be found in Section 3. We remark that Theorem 4 can not be used to say anything about the behaviour of $R_{k}\left(C_{r}\right)$ when k is fixed and r is increasing. Bondy and Erdős [2] showed that their conjecture holds for all r when $k=2$. For $k=3$, Łuczak [9] employed the regularity method to prove that Bondy and Erdős's

https://daneshyari.com/en/article/5777621

Download Persian Version:

https://daneshyari.com/article/5777621

Daneshyari.com

[^0]: E-mail address: a.n.day@qmul.ac.uk (A.N. Day).

