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1. Introduction

In this paper all colourings of a graph G will refer to colourings of the edges of G.
The odd girth of G, written og(G), is the length of the shortest odd cycle in G. Given a
colouring C of G we say the odd girth of C, written og(C), is the length of the shortest
monochromatic odd cycle found in C. It is a simple exercise to see that it is possible
to k-colour the complete graph Ko such that each colour comprises a bipartite graph.
Moreover, such colourings only exist for K, if n < 2*. Indeed, consider labelling each
vertex of K,, with a binary vector of length k, where the 7th coordinate of the label given
to a vertex is determined by which side of the bipartition of colour i the vertex lies in. All
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vertices of K,, must receive distinct labels, and so n < 2*. It follows that any k-colouring
of Kok, must contain a monochromatic odd cycle. Based on this observation, Erdés
and Graham [4] asked the following question:

Question 1. How large can the smallest monochromatic odd cycle in a k-colouring of
K2k+1 be?

Moreover, Chung [3] asked further whether or not this quantity is unbounded as k
increases. In this paper we show that the size of the least odd cycle that must appear is
indeed unbounded.

Theorem 2. For all positive integers r there exists an integer k and a k-colouring of
Kor 1 with odd girth at least r.

The proof of Theorem 2 can be found in Section 2. From a quantitative perspective,
our proof of Theorem 2 will show that there exist k-colourings of Kok, with odd girth
at least 2V21°22(F)—¢ for some constant c. This result is a consequence of Corollary 6
which can be found at the end of Section 2.

For a graph H, the k-colour Ramsey number Ry (H) is defined as the least integer n
such that every k-colouring of K, contains a monochromatic copy of H. We say that a
colouring of a graph G is H-free if it contains no monochromatic copy of H. Erd6s and
Graham [4] showed that

RL(Cy) = (r—1)28 1 +1 (1)

whenever r > 3 is an odd integer. The construction used to show this is as follows:
When k& = 1 simply take a 1-colouring of K,_1, for k£ > 1 take two disjoint copies of the
construction for £ — 1 and colour every edge between the two copies with a new colour.
This construction led Bondy and Erdds [2] to make the following conjecture.

Conjecture 3. (Bondy, Erdés) Equality holds in (1) for all odd integers r > 3.

In this paper we disprove Conjecture 3 by using the result of Theorem 2 to construct
colourings that give new lower bounds for Ry (C,) whenever r is an odd integer and k is
sufficiently large.

Theorem 4. For all odd integers r there exists a constant € = e(r) > 0 such that, for all
k sufficiently large, Ry(C,) > (r — 1)(2 + €)* 1.

The proof of Theorem 4 can be found in Section 3. We remark that Theorem 4 can
not be used to say anything about the behaviour of Ry(C,) when k is fixed and r is
increasing. Bondy and Erdés [2] showed that their conjecture holds for all » when k = 2.
For k = 3, Luczak [9] employed the regularity method to prove that Bondy and Erdés’s
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