5-choosability of graphs with crossings far apart ${ }^{\text {an }}$

Zdeněk Dvořák ${ }^{\text {a,1 }}$, Bernard Lidický ${ }^{\text {b,2 }}$, Bojan Mohar ${ }^{\text {c,3,4 }}$
${ }^{\text {a }}$ Computer Science Institute of Charles University, Prague, Czechia
${ }^{\text {b }}$ Iowa State University, Ames IA, USA
${ }^{c}$ Department of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada

A R T I C L E I N F O

Article history:

Received 14 January 2012
Available online xxxx

Keywords:

Chromatic number
Crossing number
List coloring

A B S T R A C T

We give a new proof of the fact that every planar graph is 5 -choosable, and use it to show that every graph drawn in the plane so that the distance between every pair of crossings is at least 15 is 5 -choosable. At the same time we may allow some vertices to have lists of size four only, as long as they are far apart and far from the crossings.
© 2016 Elsevier Inc. All rights reserved.

Thomassen [5] showed that every planar graph is 5-choosable. We prove a strengthening of this result, allowing some crossings. Suppose that a graph G is drawn in the plane with some crossings, and for $i \in\{1,2\}$, let $u_{i} v_{i}$ and $x_{i} y_{i}$ be two edges of G crossing each other. The distance between the crossing of $u_{1} v_{1}$ with $x_{1} y_{1}$ and the crossing of $u_{2} v_{2}$ with

[^0]$x_{2} y_{2}$ is the length of the shortest path in G with one end in the set $\left\{u_{1}, v_{1}, x_{1}, y_{1}\right\}$ and the other end in the set $\left\{u_{2}, v_{2}, x_{2}, y_{2}\right\}$. Our main result is the following.

Theorem 1. Every graph drawn in the plane so that the distance between every pair of crossings is at least 15 is 5 -choosable.

Let us recall that a list assignment L for G is a function that assigns to each vertex of G a set $L(v)$, called the list of admissible colors for v. An L-coloring is a choice of a color $\varphi(v) \in L(v)$ for each $v \in V(G)$ such that no two adjacent vertices receive the same color. The graph is k-choosable if it admits an L-coloring for every list assignment L with $|L(v)| \geq k$ for every $v \in V(G)$.

The main idea of Thomassen's beautiful proof of 5 -choosability of planar graphs is to establish the following more general statement.

Theorem 2 (Thomassen [5]). Let G be a plane graph with the outer face F, xy an edge of F, and L a list assignment such that $|L(v)| \geq 5$ for $v \in V(G) \backslash V(F),|L(v)| \geq 3$ for $v \in V(F) \backslash\{x, y\},|L(x)|=|L(y)|=1$ and $L(x) \neq L(y)$. Then G is L-colorable.

Let us note that the lists of x and y of size 1 give a precoloring of a path of length 1 in the outer face of G. Naturally, one might try to prove Theorem 1 by showing a variant of Theorem 2 allowing distant crossings. Unfortunately, almost any attempt to alter the statement of Theorem 2 (e.g., by allowing more than two vertices to be precolored, allowing lists of size 2 subject to some constraints, allowing some crossings in the drawing, etc.) fails with infinitely many counterexamples. To overcome this obstacle, we give a new proof of 5 -choosability of planar graphs, see Theorem 6 in Section 1, which turns out to be more robust with respect to some strengthenings of the planar 5-choosability theorem. The proof of Theorem 6 is inspired by Thomassen's proof [6] of 3-choosability of planar graphs of girth 5 .

In the course of the proof of Theorem 1, it is convenient to allow in addition to crossings also some other irregularities, such as vertices with fewer than 5 available colors. Hence, we actually obtain the following stronger statement (the distance between a vertex z and a crossing of edges $u v$ and $x y$ is the length of the shortest path from z to $\{u, v, x, y\}$).

Theorem 3. Let G be a graph drawn in the plane with some crossings and let $N \subseteq V(G)$ be a set of vertices such that the distance between any pair of crossed edges is at least 15, the distance between any crossing and a vertex in N is at least 13, and the distance between any two vertices in N is at least 11. Then G is L-colorable for any list assignment L such that $|L(v)|=4$ for $v \in N$ and $|L(v)| \geq 5$ for $v \in V(G) \backslash N$.

Some distance condition on the crossings in Theorem 1 is necessary, even if we allow only three crossings, as shown by K_{6}. On the other hand, it was proved in [3] and independently also in [2] that the distance requirement is not needed, if we have at most two crossings. The inductive proof of Theorem 3 involves a stronger inductive hypothesis

Download Persian Version:
https://daneshyari.com/article/5777632

Daneshyari.com

[^0]: 47 This research was supported by the CZ-SL bilateral project MEB 091037.
 E-mail addresses: rakdver@iuuk.mff.cuni.cz (Z. Dvořák), lidicky@iastate.edu (B. Lidický), mohar@sfu.ca (B. Mohar).
 ${ }^{1}$ Supported by Institute for Theoretical Computer Science (ITI), project 1M0545 of Ministry of Education of Czech Republic, and by project GA201/09/0197 (Graph colorings and flows: structure and applications) of Czech Science Foundation. Revised under the support of project 14-19503S (Graph coloring and structure) of Czech Science Foundation.
 ${ }^{2}$ Supported in part by NSF grants DMS-1266016 and DMS-1600390.
 ${ }^{3}$ Supported in part by an NSERC Discovery Grant (Canada), by the Canada Research Chairs program, and by the Research Grant P1-0297 of ARRS (Slovenia).
 ${ }^{4}$ On leave from: IMFM \& FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.

