A non-trivial upper bound on the threshold bias of the Oriented-cycle game

Dennis Clemens ${ }^{\mathrm{a}, 1}$, Anita Liebenau ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Institut für Mathematik, Technische Universität Hamburg-Harburg, Germany
${ }^{\text {b }}$ School of Mathematical Sciences, Monash University, Clayton 3800, Australia

A R T I C L E I N F O

Article history:

Received 24 April 2014
Available online 25 May 2016

Keywords:

Orientation games
Digraphs
Cycles

Abstract

In the Oriented-cycle game, introduced by Bollobás and Szabó [7], two players, called OMaker and OBreaker, alternately direct edges of K_{n}. OMaker directs exactly one previously undirected edge, whereas OBreaker is allowed to direct between one and b previously undirected edges. OMaker wins if the final tournament contains a directed cycle, otherwise OBreaker wins. Bollobás and Szabó [7] conjectured that for a bias as large as $n-3$ OMaker has a winning strategy if OBreaker must take exactly b edges in each round. It was shown recently by Ben-Eliezer, Krivelevich and Sudakov [6], that OMaker has a winning strategy for this game whenever $b<n / 2-1$. In this paper, we show that OBreaker has a winning strategy whenever $b>5 n / 6+1$. Moreover, in case OBreaker is required to direct exactly b edges in each move, we show that OBreaker wins for $b \geqslant 19 n / 20$, provided that n is large enough. This refutes the conjecture by Bollobás and Szabó.

© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

We consider biased orientation games, as discussed by Ben-Eliezer, Krivelevich and Sudakov in [6]. In orientation games, the board consists of the edges of the complete graph K_{n}. In the $(a: b)$ orientation game, the two players called OMaker and OBreaker, alternately direct previously undirected edges. OMaker starts, and in each round, OMaker directs between one and a edges, and then OBreaker directs between one and b edges. At the end of the game, the final graph is a tournament on n vertices. OMaker wins the game if this tournament has some predefined property \mathcal{P}. Otherwise, OBreaker wins.

Orientation games can be seen as a relative of ($a: b$) Maker-Breaker games, played on the complete graph K_{n}. The game is played by two players, Maker and Breaker, who alternately claim a and b edges, respectively. Maker wins if the subgraph consisting of her edges satisfies some given monotone-increasing property \mathcal{P}. Otherwise, Breaker wins. Maker-Breaker games have been widely studied (cf. [1-3,5,8,10, 11, 14]), and it is quite natural to translate typical questions about Maker-Breaker games to orientation games.

For instance, Beck [4] studied the so-called Clique game, proving that in the ($1: 1$) Maker-Breaker game, the largest clique that Maker is able to build is of size $(2-o(1)) \log _{2}(n)$. Motivated by this result, an orientation game version of the Clique game is considered in [9]: Given a tournament T_{k} on k vertices, it is proven there that for $k \leqslant(2-o(1)) \log _{2}(n)$ OMaker can ensure that T_{k} appears in the final tournament, while for $k \geqslant(4+o(1)) \log _{2}(n)$ OBreaker always can prevent a copy of T_{k}.

In this work we only consider orientation games with $a=1$. We refer to the ($1: 1$) orientation game as the unbiased orientation game, and the $(1: b)$ orientation game as the b-biased orientation game when $b>1$. Increasing b can only help OBreaker (since OBreaker can choose to direct fewer than b edges per round) so the game is bias monotone. Therefore, any such game (besides degenerate games where \mathcal{P} is a property that is satisfied by every or by no tournament on n vertices) has a threshold $t(n, \mathcal{P})$ such that OMaker wins the b-biased game when $b \leqslant t(n, \mathcal{P})$ and OBreaker wins the game when $b>t(n, \mathcal{P})$.

In a variant, OBreaker is required to direct exactly b edges in each round. We refer to this variant as the strict b-biased orientation game, where the strict rules apply. Accordingly, we say the monotone rules apply in the game we defined above - when OBreaker is free to direct between one and b edges. Playing the exact bias in every round may be disadvantageous for OBreaker, so the existence of a threshold as for the monotone rules is unclear in general. We therefore define $t^{+}(n, \mathcal{P})$ to be the largest value b such that OMaker has a strategy to win the strict b-biased orientation game, and $t^{-}(n, \mathcal{P})$ to be the largest integer such that for every $b \leqslant t^{-}(n, \mathcal{P})$, OMaker has a strategy to win the strict b-biased orientation game. (The definition of these two threshold functions is motivated by the study of Avoider-Enforcer games, cf. [13,12].) Trivially, $t(n, \mathcal{P}) \leqslant t^{-}(n, \mathcal{P}) \leqslant t^{+}(n, \mathcal{P})$ holds.

https://daneshyari.com/en/article/5777644

Download Persian Version:
https://daneshyari.com/article/5777644

Daneshyari.com

[^0]: E-mail addresses: dennis.clemens@tuhh.de (D. Clemens), anita.liebenau@monash.edu (A. Liebenau).
 1 Work done at FU Berlin while supported by DFG, project SZ 261/1-1.
 ${ }^{2}$ Work done while at FU Berlin, supported by the Berlin Mathematical School.

