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Tutte’s famous 5-flow conjecture asserts that every bridgeless 
graph has a nowhere-zero 5-flow. Seymour proved that every 
such graph has a nowhere-zero 6-flow. Here we give (two 
versions of) a new proof of Seymour’s Theorem. Both are 
roughly equal to Seymour’s in terms of complexity, but they 
offer an alternative perspective which we hope will be of value.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

By default we permit graphs to have parallel edges, and we forbid loops. Let G be 
a graph which is equipped with an orientation of its edges and let Γ be an additively 
written abelian group. We define a function ϕ : E(G) → Γ to be a Γ-flow if the following 
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condition, called Kirchhoff’s law, is satisfied at every vertex v. Here δ+(v) (δ−(v)) denotes 
the set of edges directed away from (toward) v.

∑
e∈δ+(v)

ϕ(e) =
∑

e∈δ−(v)

ϕ(e)

We say that ϕ is nowhere-zero if 0 /∈ ϕ(E(G)) and for a positive integer k we say that 
ϕ is a k-flow if Γ = Z and |ϕ(e)| < k holds for every edge e. Note that if ϕ is a Γ-flow, 
we may reverse the orientation of an edge e and replace ϕ(e) by its additive inverse to 
obtain a new flow. This operation preserves the properties of being nowhere-zero and 
k-flow, so the question of whether G has a nowhere-zero Γ-flow (k-flow) depends only 
on the underlying graph and not the particular orientation. Accordingly, we say that 
an undirected graph G has a nowhere-zero Γ-flow (k-flow) if some (and thus every) 
orientation of G admits such a function.

Tutte initiated the study of nowhere-zero flows by demonstrating that nowhere-zero 
k-flows are dual to k-colourings in planar graphs. He made three famous conjectures, 
known as the 5-flow, 4-flow, and 3-flow conjectures which extend various colouring theo-
rems about planar graphs to arbitrary graphs. These conjectures have been the driving 
motivation for the subject, and all three remain open despite considerable effort. For 
the purposes of this paper, the relevant conjecture is the 5-flow conjecture. The reader 
interested to learn more about the area may consult [1, Chapter 6] or [6].

Conjecture 1 (Tutte [5]). Every 2-edge-connected graph has a nowhere-zero 5-flow.

The Petersen graph does not have a nowhere-zero 4-flow, so if true, this conjecture 
is best possible. The strongest partial result toward this conjecture is Seymour’s 6-flow 
theorem.

Theorem 2 (Seymour [4]). Every 2-edge-connected graph has a nowhere-zero 6-flow.

The purpose of this paper is to provide a new proof of this theorem. In fact we 
will give two (closely related) variants of this new proof. Seymour’s original paper also 
contains two proofs of the 6-flow theorem which are similar in some ways, but have 
somewhat different character. Both of our proofs are roughly equal to Seymour’s in 
terms of complexity, but they offer an alternative perspective which we hope will be of 
value. All of these proofs rely on the following key result of Tutte.

Theorem 3 (Tutte). For every graph G and positive integer k we have the following 
equivalence: G has a nowhere-zero k-flow if and only if G has a nowhere-zero Zk-flow.

Though we shall not require it, let us note that Tutte proved more generally that for 
every abelian group Γ of order k, a graph has a nowhere-zero k-flow if and only if it 
has a nowhere-zero Γ-flow. For our purposes, the key consequence of Theorem 3 (and 
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