Turán problems and shadows II: Trees

Alexandr Kostochka ${ }^{\text {a,b,1 }}$, Dhruv Mubayi ${ }^{\text {c,2 }}$, Jacques Verstraëte ${ }^{\text {d,3 }}$
${ }^{\text {a }}$ University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
${ }^{\text {b }}$ Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
${ }^{\text {c }}$ Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, IL 60607, United States
${ }^{\text {d }}$ Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA

A R T I C L E I N F O

Article history:

Received 29 January 2014
Available online xxxx

Keywords:

Hypergraph Turán numbers
Expansions of graphs
Forests
Crosscuts

A B S T R A C T

The expansion G^{+}of a graph G is the 3-uniform hypergraph obtained from G by enlarging each edge of G with a vertex disjoint from $V(G)$ such that distinct edges are enlarged by distinct vertices. Let $\mathrm{ex}_{r}(n, F)$ denote the maximum number of edges in an r-uniform hypergraph with n vertices not containing any copy of F. The authors [10] recently determined $\operatorname{ex}_{3}\left(n, G^{+}\right)$when G is a path or cycle, thus settling conjectures of Füredi-Jiang [8] (for cycles) and Füredi-JiangSeiver [9] (for paths).
Here we continue this project by determining the asymptotics for $\operatorname{ex}_{3}\left(n, G^{+}\right)$when G is any fixed forest. This settles a conjecture of Füredi [7]. Using our methods, we also show that for any graph G, either $\operatorname{ex}_{3}\left(n, G^{+}\right) \leq\left(\frac{1}{2}+o(1)\right) n^{2}$ or $\operatorname{ex}_{3}\left(n, G^{+}\right) \geq(1+o(1)) n^{2}$, thereby exhibiting a jump for the Turán number of expansions.
© 2016 Published by Elsevier Inc.

[^0]http://dx.doi.org/10.1016/j.jctb.2016.06.011 0095-8956/© 2016 Published by Elsevier Inc.

1. Introduction

An r-uniform hypergraph F, or simply r-graph, is a family of r-element subsets of a finite set. We associate an r-graph F with its edge set and call its vertex set $V(F)$. Given a set of r-graphs \mathcal{F}, let $\operatorname{ex}_{r}(n, \mathcal{F})$ denote the maximum number of edges in an r-graph on n vertices that does not contain any r-graph from \mathcal{F}. When $\mathcal{F}=\{F\}$ we write $\mathrm{ex}_{r}(n, F)$. We will omit the subscript r in this notation if it is obvious from context, and this paper deals exclusively with the case $r=3$. Let G be a graph, and for each edge $e \in G$ let X_{e} be a set of $r-2$ vertices so that $X_{e} \cap V(G)=\emptyset$ and $X_{e} \cap X_{f}=\emptyset$ when $e \neq f$. The r-uniform expansion G^{+}of a graph G is the r-graph $G^{+}=\left\{e \cup X_{e}: e \in G\right\}$.

Expansions of graphs include many important hypergraphs whose extremal functions have been investigated, for instance when G is a triangle and more generally a clique [7-13]. Even the simplest case of the expansion of a path with two edges is nontrivial, in this case we are asking for two hyperedges intersecting in exactly one point. Here the extremal function was determined by Frankl [5], settling a conjecture of Erdős and Sós. If a graph is not r-colorable then its r-uniform expansion G^{+}is not r-partite, so $\operatorname{ex}_{r}\left(n, G^{+}\right)=\Omega\left(n^{r}\right)$. We focus on $\operatorname{ex}_{r}\left(n, G^{+}\right)$when G is r-partite, where a well-known result of Erdős [1] yields ex $\left(n, G^{+}\right)=O\left(n^{r-\epsilon_{G}}\right)$ for some $\epsilon_{G}>0$.

The authors [10] had previously determined $\operatorname{ex}_{3}\left(n, G^{+}\right)$exactly (for large n) when G is a path or cycle of fixed length $k \geq 3$, thereby answering questions of Füredi-JiangSeiver [9] and Füredi-Jiang [8].

1.1. Results

A set of vertices in a hypergraph F containing exactly one vertex from every edge of F is called a crosscut, following Frankl and Füredi [6]. Let $\sigma(F)$ be the minimum size of a crosscut of F if it exists, i.e.,

$$
\sigma(F):=\min \{|X|: X \subset V(F), \forall e \in F,|e \cap X|=1\}
$$

if such an X exists. We observe that crosscuts always exist for expansions.
Since the r-graph on n vertices consisting of all edges containing exactly one vertex from a fixed subset of size $\sigma(F)-1$ does not contain F, we have

$$
\begin{equation*}
\operatorname{ex}_{r}(n, F) \geq(\sigma(F)-1)\binom{n-\sigma(F)+1}{r-1} \sim(\sigma(F)-1+o(1))\binom{n}{r-1} \tag{1}
\end{equation*}
$$

An intriguing open question is when asymptotic equality holds above and this is one of our motivations for this project. Indeed, it appears that the parameter $\sigma(F)$ often plays a crucial role in determining the extremal function for F. The value of $\operatorname{ex}_{3}\left(n, G^{+}\right)$ was determined precisely by the authors [10] when G is a path or cycle. Füredi [7] determined the asymptotics when G is a forest and $r \geq 4$, by showing that $\operatorname{ex}_{r}\left(n, G^{+}\right)=$ $\left(\sigma\left(G^{+}\right)-1+o(1)\right)\binom{n}{r-1}$. Füredi's proof involved extensive use of the delta system method

https://daneshyari.com/en/article/5777665

Download Persian Version:

https://daneshyari.com/article/5777665

Daneshyari.com

[^0]: E-mail addresses: kostochk@math.uiuc.edu (A. Kostochka), mubayi@uic.edu (D. Mubayi), jverstra@math.ucsd.edu (J. Verstraëte).
 ${ }^{1}$ Research of this author is supported in part by NSF grants DMS-1266016 and DMS-1600592 and by Grant NSh.1939.2014.1 of the President of Russia for Leading Scientific Schools.
 ${ }^{2}$ Research partially supported by NSF grants DMS-0969092 and DMS-1300138.
 ${ }^{3}$ Research supported by NSF Grant DMS-1101489.

