Notes

When does the list-coloring function of a graph equal its chromatic polynomial ${ }^{\text {th }}$

Wei Wang ${ }^{\text {a,b }}$, Jianguo Qian ${ }^{\mathrm{a}, *}$, Zhidan Yan ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
${ }^{\text {b }}$ College of Information Engineering, Tarim University, Alar 843300, PR China

A R T I C L E I N F O

Article history:

Received 25 April 2016
Available online xxxx

Keywords:

List coloring
Broken cycle
Chromatic polynomial

Abstract

Let G be a connected graph with n vertices and m edges. Using Whitney's broken cycle theorem, we prove that if $k>$ $\frac{m-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1)$ then for every k-list assignment L of G, the number of L-colorings of G is at least that of ordinary k-colorings of G. This improves previous results of Donner (1992) and Thomassen (2009), who proved the result for k sufficiently large and $k>n^{10}$, respectively.

© 2016 Published by Elsevier Inc.

1. Introduction

For a positive integer k, a k-list assignment of a graph $G=(V(G), E(G))$ is a mapping L which assigns to each vertex v a set $L(v)$ of k permissible colors. Given a k-list assignment L, an L-list-coloring, or L-coloring for short, is a mapping c: $V(G) \rightarrow \cup_{v \in V(G)} L(v)$ such that $c(v) \in L(v)$ for each vertex v, and $c(u) \neq c(v)$ for any two adjacent vertices u and v. The notion of list coloring was introduced by Vizing [6] as well as by Erdős, Rubin and Taylor [3].

[^0]http://dx.doi.org/10.1016/j.jctb.2016.08.002 0095-8956/© 2016 Published by Elsevier Inc.

For a k-list assignment L, we use $P(G, L)$ to denote the number of L-colorings of G and, moreover, we use $P_{l}(G, k)$ to denote the minimum value of $P(G, L)$ over all k-list assignments L of G. We note that, if $L(v)=\{1,2, \ldots, k\}$ for all vertices $v \in V(G)$, then an L-coloring is exactly an ordinary k-coloring [5] and therefore, $P(G, L)$ agrees with the classic chromatic polynomial $P(G, k)$ introduced by Birkhoff [1] in 1912. In this sense, $P_{l}(G, k)$ is an analogue of the chromatic polynomial. However, it was shown that $P_{l}(G, k)$ is in general not a polynomial [2], answering the problem of Kostochka and Sidorenko [4]. Following [5], we call $P_{l}(G, k)$ the list-coloring function of G. This leads to an interesting question: 'When does the list-coloring function $P_{l}(G, x)$ equal the chromatic polynomial $P(G, x)$ evaluated at k '. In [4] Kostochka and Sidorenko observed that if G is a chordal graph then $P_{l}(G, k)=P(G, k)$ for any positive integer k. For a general graph G, Donner [2] and Thomassen [5] proved that $P_{l}(G, k)=P(G, k)$ when k is sufficiently large. More specifically, Thomassen proved that $P_{l}(G, k)=P(G, k)$ provided $k>|V(G)|^{10}$.

In this note, we use Whitney's broken cycle theorem to prove the following result.
Theorem 1. For any connected graph G with m edges, if

$$
\begin{equation*}
k>\frac{m-1}{\ln (1+\sqrt{2})} \approx 1.135(m-1) \tag{1}
\end{equation*}
$$

then $P_{l}(G, k)=P(G, k)$.

2. Proof of Theorem 1

Let G be a connected graph G with n vertices and m edges. Note that if $m \leq 1$ then G is K_{1} or K_{2} and Theorem 1 trivially holds. In what follows we assume $m \geq 2$ and, for the convenience of discussion, we label these m edges by $1,2, \ldots, m$.

A broken cycle of G is a set of edges obtained from the edge set of a cycle of G by removing its maximum edge. Define a set system

$$
\begin{equation*}
\mathcal{B}(G)=\{S: S \subseteq E(G) \text { and } S \text { contains no broken cycle }\} \tag{2}
\end{equation*}
$$

Such a system is also called a broken circuit complex; see [8] for details. We note that any cycle contains at least one broken cycle. So for each $S \in \mathcal{B}(G)$, the spanning subgraph $(V(G), S)$ (the graph with vertex set $V(G)$ and edge set S) contains no cycles and hence $|S| \leq n-1$. We write

$$
\begin{equation*}
\mathcal{B}(G)=\mathcal{B}_{0}(G) \cup \mathcal{B}_{1}(G) \cup \cdots \cup \mathcal{B}_{n-1}(G), \tag{3}
\end{equation*}
$$

where $\mathcal{B}_{i}(G)=\{S \in \mathcal{B}(G):|S|=i\}$. Note that for any $S \in \mathcal{B}_{i}(G)$, the subgraph $(V(G), S)$ has exactly $n-i$ components, all of which are trees. Now Whitney's broken cycle theorem can be stated as follows.

https://daneshyari.com/en/article/5777668

Download Persian Version:
https://daneshyari.com/article/5777668

Daneshyari.com

[^0]: supported by the National Natural Science Foundation of China under Grant Nos. 11471273 and 11561058.

 * Corresponding author.

 E-mail address: jgqian@xmu.edu.cn (J. Qian).

