ARTICLE IN PRESS

YJCTB:3027

Journal of Combinatorial Theory, Series B • • • (• • • •) • • • - • • •

Notes

When does the list-coloring function of a graph equal its chromatic polynomial $\stackrel{\Leftrightarrow}{\approx}$

Wei Wang^{a,b}, Jianguo Qian^{a,*}, Zhidan Yan^b

^a School of Mathematical Sciences, Xiamen University, Xiamen 361005, PR China
 ^b College of Information Engineering, Tarim University, Alar 843300, PR China

ARTICLE INFO

Article history: Received 25 April 2016 Available online xxxx

Keywords: List coloring Broken cycle Chromatic polynomial

ABSTRACT

Let G be a connected graph with n vertices and m edges. Using Whitney's broken cycle theorem, we prove that if $k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m-1)$ then for every k-list assignment L of G, the number of L-colorings of G is at least that of ordinary k-colorings of G. This improves previous results of Donner (1992) and Thomassen (2009), who proved the result for k sufficiently large and $k > n^{10}$, respectively.

© 2016 Published by Elsevier Inc.

1. Introduction

For a positive integer k, a k-list assignment of a graph G = (V(G), E(G)) is a mapping L which assigns to each vertex v a set L(v) of k permissible colors. Given a k-list assignment L, an L-list-coloring, or L-coloring for short, is a mapping $c: V(G) \to \bigcup_{v \in V(G)} L(v)$ such that $c(v) \in L(v)$ for each vertex v, and $c(u) \neq c(v)$ for any two adjacent vertices u and v. The notion of list coloring was introduced by Vizing [6] as well as by Erdős, Rubin and Taylor [3].

* Corresponding author.

E-mail address: jgqian@xmu.edu.cn (J. Qian).

http://dx.doi.org/10.1016/j.jctb.2016.08.002 0095-8956/© 2016 Published by Elsevier Inc.

Please cite this article in press as: W. Wang et al., When does the list-coloring function of a graph equal its chromatic polynomial, J. Combin. Theory Ser. B (2016), http://dx.doi.org/10.1016/j.jctb.2016.08.002

 $^{^{\}pm}$ Supported by the National Natural Science Foundation of China under Grant Nos. 11471273 and 11561058.

ARTICLE IN PRESS

2 W. Wang et al. / Journal of Combinatorial Theory, Series $B \cdot \cdot \cdot (\cdot \cdot \cdot \cdot) \cdot \cdot \cdot - \cdot \cdot$

For a k-list assignment L, we use P(G, L) to denote the number of L-colorings of G and, moreover, we use $P_l(G, k)$ to denote the minimum value of P(G, L) over all k-list assignments L of G. We note that, if $L(v) = \{1, 2, ..., k\}$ for all vertices $v \in V(G)$, then an L-coloring is exactly an ordinary k-coloring [5] and therefore, P(G, L) agrees with the classic chromatic polynomial P(G, k) introduced by Birkhoff [1] in 1912. In this sense, $P_l(G, k)$ is an analogue of the chromatic polynomial. However, it was shown that $P_l(G, k)$ is in general not a polynomial [2], answering the problem of Kostochka and Sidorenko [4]. Following [5], we call $P_l(G, k)$ the list-coloring function of G. This leads to an interesting question: 'When does the list-coloring function $P_l(G, x)$ equal the chromatic polynomial P(G, x) evaluated at k'. In [4] Kostochka and Sidorenko observed that if G is a chordal graph then $P_l(G, k) = P(G, k)$ for any positive integer k. For a general graph G, Donner [2] and Thomassen [5] proved that $P_l(G, k) = P(G, k)$ when k is sufficiently large. More specifically, Thomassen proved that $P_l(G, k) = P(G, k)$ provided $k > |V(G)|^{10}$.

In this note, we use Whitney's broken cycle theorem to prove the following result.

Theorem 1. For any connected graph G with m edges, if

$$k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m-1) \tag{1}$$

then $P_l(G,k) = P(G,k)$.

2. Proof of Theorem 1

Let G be a connected graph G with n vertices and m edges. Note that if $m \leq 1$ then G is K_1 or K_2 and Theorem 1 trivially holds. In what follows we assume $m \geq 2$ and, for the convenience of discussion, we label these m edges by $1, 2, \ldots, m$.

A broken cycle of G is a set of edges obtained from the edge set of a cycle of G by removing its maximum edge. Define a set system

$$\mathcal{B}(G) = \{ S \colon S \subseteq E(G) \text{ and } S \text{ contains no broken cycle} \}.$$
(2)

Such a system is also called a broken circuit complex; see [8] for details. We note that any cycle contains at least one broken cycle. So for each $S \in \mathcal{B}(G)$, the spanning subgraph (V(G), S) (the graph with vertex set V(G) and edge set S) contains no cycles and hence $|S| \leq n-1$. We write

$$\mathcal{B}(G) = \mathcal{B}_0(G) \cup \mathcal{B}_1(G) \cup \dots \cup \mathcal{B}_{n-1}(G), \tag{3}$$

where $\mathcal{B}_i(G) = \{S \in \mathcal{B}(G) : |S| = i\}$. Note that for any $S \in \mathcal{B}_i(G)$, the subgraph (V(G), S) has exactly n - i components, all of which are trees. Now Whitney's broken cycle theorem can be stated as follows.

Please cite this article in press as: W. Wang et al., When does the list-coloring function of a graph equal its chromatic polynomial, J. Combin. Theory Ser. B (2016), http://dx.doi.org/10.1016/j.jctb.2016.08.002

Download English Version:

https://daneshyari.com/en/article/5777668

Download Persian Version:

https://daneshyari.com/article/5777668

Daneshyari.com